Optimal searching behaviour generated intrinsically by the central pattern generator for locomotion

  1. David W Sims
  2. Nicolas E Humphries
  3. Nan Hu
  4. Violeta Medan
  5. Jimena Berni  Is a corresponding author
  1. Marine Biological Association of the United Kingdom, United Kingdom
  2. University of Cambridge, United Kingdom
  3. Universidad de Buenos Aires, Argentina

Abstract

Efficient searching for resources such as food by animals is key to their survival. It has been proposed that diverse animals from insects to sharks and humans adopt searching patterns that resemble a simple Lévy random walk, which is theoretically optimal for 'blind foragers' to locate sparse, patchy resources. To test if such patterns are generated intrinsically, or arise via environmental interactions, we tracked free-moving Drosophila larvae with (and without) blocked synaptic activity in the brain, suboesophageal ganglion (SOG) and sensory neurons. In brain-blocked larvae we found that extended substrate exploration emerges as multi-scale movement paths similar to truncated Lévy walks. Strikingly, power-law exponents of brain/SOG/sensory-blocked larvae averaged 1.96, close to a theoretical optimum (µ ≅ 2.0) for locating sparse resources. Thus, efficient spatial exploration can emerge from autonomous patterns in neural activity. Our results provide the strongest evidence so far for the intrinsic generation of Lévy-like movement patterns.

Data availability

All data generated and analysed in this study are available in Dryad (doi: 10.5061/dryad.7m0cfxpq0). Results from analysis are also included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. David W Sims

    Marine Biological Association of the United Kingdom, Plymouth, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Nicolas E Humphries

    Marine Biological Association of the United Kingdom, Plymouth, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Nan Hu

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Violeta Medan

    Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  5. Jimena Berni

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    jb672@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5068-1372

Funding

Wellcome (105568/Z/14/Z)

  • Jimena Berni

Royal Society (105568/Z/14/Z)

  • Jimena Berni

Consejo Nacional de Investigaciones Científicas y Técnicas (PICT 20121578)

  • Violeta Medan

Natural Environment Research Council (Oceans 2025 Strategic Research Programme)

  • David W Sims

Marine Biological Association (Senior Research Fellowship)

  • David W Sims

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Sims et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,449
    views
  • 713
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David W Sims
  2. Nicolas E Humphries
  3. Nan Hu
  4. Violeta Medan
  5. Jimena Berni
(2019)
Optimal searching behaviour generated intrinsically by the central pattern generator for locomotion
eLife 8:e50316.
https://doi.org/10.7554/eLife.50316

Share this article

https://doi.org/10.7554/eLife.50316

Further reading

    1. Ecology
    Mercury Shitindo
    Insight

    Tracking wild pigs with GPS devices reveals how their social interactions could influence the spread of disease, offering new strategies for protecting agriculture, wildlife, and human health.

    1. Ecology
    2. Neuroscience
    Ralph E Peterson, Aman Choudhri ... Dan H Sanes
    Research Article

    In nature, animal vocalizations can provide crucial information about identity, including kinship and hierarchy. However, lab-based vocal behavior is typically studied during brief interactions between animals with no prior social relationship, and under environmental conditions with limited ethological relevance. Here, we address this gap by establishing long-term acoustic recordings from Mongolian gerbil families, a core social group that uses an array of sonic and ultrasonic vocalizations. Three separate gerbil families were transferred to an enlarged environment and continuous 20-day audio recordings were obtained. Using a variational autoencoder (VAE) to quantify 583,237 vocalizations, we show that gerbils exhibit a more elaborate vocal repertoire than has been previously reported and that vocal repertoire usage differs significantly by family. By performing gaussian mixture model clustering on the VAE latent space, we show that families preferentially use characteristic sets of vocal clusters and that these usage preferences remain stable over weeks. Furthermore, gerbils displayed family-specific transitions between vocal clusters. Since gerbils live naturally as extended families in complex underground burrows that are adjacent to other families, these results suggest the presence of a vocal dialect which could be exploited by animals to represent kinship. These findings position the Mongolian gerbil as a compelling animal model to study the neural basis of vocal communication and demonstrates the potential for using unsupervised machine learning with uninterrupted acoustic recordings to gain insights into naturalistic animal behavior.