Dullard-mediated Smad1/5/8 inhibition controls mouse cardiac neural crest cells condensation and outflow tract septation

  1. Jean-François Darrigrand
  2. Mariana Valente
  3. Glenda Comai
  4. Pauline Martinez
  5. Maxime Petit
  6. Ryuichi Nishinakamura
  7. Daniel Sampaio Osorio
  8. Renault Gilles
  9. Carmen Marchiol
  10. Vanessa Ribes  Is a corresponding author
  11. Bruno Cadot  Is a corresponding author
  1. INSERM, France
  2. CNRS, France
  3. Kumamoto University, Japan
  4. Institute for Molecular and Cellular Biology, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal

Abstract

The establishment of separated pulmonary and systemic circulation in vertebrates, via the cardiac outflow tract (OFT) septation is a sensitive developmental process accounting for 10% of all congenital anomalies. Neural Crest Cells (NCC) colonising the heart condensate along the primitive endocardial tube and force its scission into two tubes. Here, we show that NCC aggregation progressively decreases along the OFT distal-proximal axis following a BMP signalling gradient. Dullard, a nuclear phosphatase, tunes the BMP gradient amplitude and prevents NCC premature condensation. Dullard maintains transcriptional programs providing NCC with mesenchymal traits. It attenuates the expression of the aggregation factor Sema3c and conversely promotes that of the epithelial-mesenchymal transition driver Twist1. Altogether, Dullard-mediated fine-tuning of BMP signalling ensures the timed and progressive zipper-like closure of the OFT by the NCC and prevents the formation of an heart carrying the four congenital abnormalities defining the tetralogy of Fallot.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jean-François Darrigrand

    U974-Center for Research in Myology, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Mariana Valente

    U970 - Cellular, Molecular, and Physiological Mechanisms of Heart Failure, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Glenda Comai

    UMR 3738 - Department of Developmental & Stem Cell Biology, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3244-3378
  4. Pauline Martinez

    U974-Center for Research in Myology, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Maxime Petit

    U 1223 - Unité Lymphopoïèse, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8443-1531
  6. Ryuichi Nishinakamura

    Department of Kidney Development, Institute of Molecular Embryology & Genetics, Kumamoto University, Kumamoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel Sampaio Osorio

    Cytoskeletal Dynamics Lab, Institute for Molecular and Cellular Biology, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4144-8189
  8. Renault Gilles

    Institut Cochin, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Carmen Marchiol

    Institut Cochin, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Vanessa Ribes

    UMR7592 - Institut Jacques Monod, CNRS, Paris, France
    For correspondence
    vanessa.ribes@ijm.fr
    Competing interests
    The authors declare that no competing interests exist.
  11. Bruno Cadot

    U974-Center for Research in Myology, INSERM, Paris, France
    For correspondence
    cadotbruno@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1888-3898

Funding

Agence Nationale de la Recherche (ANR-14-CE09-0006-04)

  • Bruno Cadot

Ligue Contre le Cancer (PREAC2016.LCC)

  • Vanessa Ribes

Agence Nationale de la Recherche (ANR-10-LABX-73)

  • Mariana Valente

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard P Harvey, Victor Chang Cardiac Research Institute, Australia

Ethics

Animal experimentation: All animal experiments (APAFIS#4163-2016042809186990) were approved by the Animal Ethics Committee of Sorbonne University (Permit Number: A751320).

Version history

  1. Received: July 18, 2019
  2. Accepted: February 26, 2020
  3. Accepted Manuscript published: February 27, 2020 (version 1)
  4. Version of Record published: March 13, 2020 (version 2)

Copyright

© 2020, Darrigrand et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,228
    views
  • 292
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jean-François Darrigrand
  2. Mariana Valente
  3. Glenda Comai
  4. Pauline Martinez
  5. Maxime Petit
  6. Ryuichi Nishinakamura
  7. Daniel Sampaio Osorio
  8. Renault Gilles
  9. Carmen Marchiol
  10. Vanessa Ribes
  11. Bruno Cadot
(2020)
Dullard-mediated Smad1/5/8 inhibition controls mouse cardiac neural crest cells condensation and outflow tract septation
eLife 9:e50325.
https://doi.org/10.7554/eLife.50325

Share this article

https://doi.org/10.7554/eLife.50325

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.