Dullard-mediated Smad1/5/8 inhibition controls mouse cardiac neural crest cells condensation and outflow tract septation

  1. Jean-François Darrigrand
  2. Mariana Valente
  3. Glenda Comai
  4. Pauline Martinez
  5. Maxime Petit
  6. Ryuichi Nishinakamura
  7. Daniel Sampaio Osorio
  8. Renault Gilles
  9. Carmen Marchiol
  10. Vanessa Ribes  Is a corresponding author
  11. Bruno Cadot  Is a corresponding author
  1. INSERM, France
  2. CNRS, France
  3. Kumamoto University, Japan
  4. Institute for Molecular and Cellular Biology, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal

Abstract

The establishment of separated pulmonary and systemic circulation in vertebrates, via the cardiac outflow tract (OFT) septation is a sensitive developmental process accounting for 10% of all congenital anomalies. Neural Crest Cells (NCC) colonising the heart condensate along the primitive endocardial tube and force its scission into two tubes. Here, we show that NCC aggregation progressively decreases along the OFT distal-proximal axis following a BMP signalling gradient. Dullard, a nuclear phosphatase, tunes the BMP gradient amplitude and prevents NCC premature condensation. Dullard maintains transcriptional programs providing NCC with mesenchymal traits. It attenuates the expression of the aggregation factor Sema3c and conversely promotes that of the epithelial-mesenchymal transition driver Twist1. Altogether, Dullard-mediated fine-tuning of BMP signalling ensures the timed and progressive zipper-like closure of the OFT by the NCC and prevents the formation of an heart carrying the four congenital abnormalities defining the tetralogy of Fallot.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jean-François Darrigrand

    U974-Center for Research in Myology, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Mariana Valente

    U970 - Cellular, Molecular, and Physiological Mechanisms of Heart Failure, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Glenda Comai

    UMR 3738 - Department of Developmental & Stem Cell Biology, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3244-3378
  4. Pauline Martinez

    U974-Center for Research in Myology, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Maxime Petit

    U 1223 - Unité Lymphopoïèse, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8443-1531
  6. Ryuichi Nishinakamura

    Department of Kidney Development, Institute of Molecular Embryology & Genetics, Kumamoto University, Kumamoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel Sampaio Osorio

    Cytoskeletal Dynamics Lab, Institute for Molecular and Cellular Biology, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4144-8189
  8. Renault Gilles

    Institut Cochin, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Carmen Marchiol

    Institut Cochin, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Vanessa Ribes

    UMR7592 - Institut Jacques Monod, CNRS, Paris, France
    For correspondence
    vanessa.ribes@ijm.fr
    Competing interests
    The authors declare that no competing interests exist.
  11. Bruno Cadot

    U974-Center for Research in Myology, INSERM, Paris, France
    For correspondence
    cadotbruno@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1888-3898

Funding

Agence Nationale de la Recherche (ANR-14-CE09-0006-04)

  • Bruno Cadot

Ligue Contre le Cancer (PREAC2016.LCC)

  • Vanessa Ribes

Agence Nationale de la Recherche (ANR-10-LABX-73)

  • Mariana Valente

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments (APAFIS#4163-2016042809186990) were approved by the Animal Ethics Committee of Sorbonne University (Permit Number: A751320).

Copyright

© 2020, Darrigrand et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,279
    views
  • 299
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jean-François Darrigrand
  2. Mariana Valente
  3. Glenda Comai
  4. Pauline Martinez
  5. Maxime Petit
  6. Ryuichi Nishinakamura
  7. Daniel Sampaio Osorio
  8. Renault Gilles
  9. Carmen Marchiol
  10. Vanessa Ribes
  11. Bruno Cadot
(2020)
Dullard-mediated Smad1/5/8 inhibition controls mouse cardiac neural crest cells condensation and outflow tract septation
eLife 9:e50325.
https://doi.org/10.7554/eLife.50325

Share this article

https://doi.org/10.7554/eLife.50325

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Subhradip Das, Sushmitha Hegde ... Girish S Ratnaparkhi
    Research Article

    Repurposing of pleiotropic factors during execution of diverse cellular processes has emerged as a regulatory paradigm. Embryonic development in metazoans is controlled by maternal factors deposited in the egg during oogenesis. Here, we explore maternal role(s) of Caspar (Casp), the Drosophila orthologue of human Fas-associated factor-1 (FAF1) originally implicated in host-defense as a negative regulator of NF-κB signaling. Maternal loss of either Casp or it’s protein partner, transitional endoplasmic reticulum 94 (TER94) leads to partial embryonic lethality correlated with aberrant centrosome behavior, cytoskeletal abnormalities, and defective gastrulation. Although ubiquitously distributed, both proteins are enriched in the primordial germ cells (PGCs), and in keeping with the centrosome problems, mutant embryos display a significant reduction in the PGC count. Moreover, the total number of pole buds is directly proportional to the level of Casp. Consistently, it’s ‘loss’ and ‘gain’ results in respective reduction and increase in the Oskar protein levels, the master determinant of PGC fate. To elucidate this regulatory loop, we analyzed several known components of mid-blastula transition and identify the translational repressor Smaug, a zygotic regulator of germ cell specification, as a potential critical target. We present a detailed structure-function analysis of Casp aimed at understanding its novel involvement during PGC development.

    1. Developmental Biology
    2. Neuroscience
    Xingsen Zhao, Qihang Sun ... Xuekun Li
    Research Article

    Williams syndrome (WS; OMIM#194050) is a rare disorder, which is caused by the microdeletion of one copy of 25–27 genes, and WS patients display diverse neuronal deficits. Although remarkable progresses have been achieved, the mechanisms for these distinct deficits are still largely unknown. Here, we have shown that neural progenitor cells (NPCs) in WS forebrain organoids display abnormal proliferation and differentiation capabilities, and synapse formation. Genes with altered expression are related to neuronal development and neurogenesis. Single cell RNA-seq (scRNA-seq) data analysis revealed 13 clusters in healthy control and WS organoids. WS organoids show an aberrant generation of excitatory neurons. Mechanistically, the expression of transthyretin (TTR) are remarkably decreased in WS forebrain organoids. We have found that GTF2IRD1 encoded by one WS associated gene GTF2IRD1 binds to TTR promoter regions and regulates the expression of TTR. In addition, exogenous TTR can activate ERK signaling and rescue neurogenic deficits of WS forebrain organoids. Gtf2ird1-deficient mice display similar neurodevelopmental deficits as observed in WS organoids. Collectively, our study reveals critical function of GTF2IRD1 in regulating neurodevelopment of WS forebrain organoids and mice through regulating TTR-ERK pathway.