Dullard-mediated Smad1/5/8 inhibition controls mouse cardiac neural crest cells condensation and outflow tract septation

  1. Jean-François Darrigrand
  2. Mariana Valente
  3. Glenda Comai
  4. Pauline Martinez
  5. Maxime Petit
  6. Ryuichi Nishinakamura
  7. Daniel Sampaio Osorio
  8. Renault Gilles
  9. Carmen Marchiol
  10. Vanessa Ribes  Is a corresponding author
  11. Bruno Cadot  Is a corresponding author
  1. INSERM, France
  2. CNRS, France
  3. Kumamoto University, Japan
  4. Institute for Molecular and Cellular Biology, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal

Abstract

The establishment of separated pulmonary and systemic circulation in vertebrates, via the cardiac outflow tract (OFT) septation is a sensitive developmental process accounting for 10% of all congenital anomalies. Neural Crest Cells (NCC) colonising the heart condensate along the primitive endocardial tube and force its scission into two tubes. Here, we show that NCC aggregation progressively decreases along the OFT distal-proximal axis following a BMP signalling gradient. Dullard, a nuclear phosphatase, tunes the BMP gradient amplitude and prevents NCC premature condensation. Dullard maintains transcriptional programs providing NCC with mesenchymal traits. It attenuates the expression of the aggregation factor Sema3c and conversely promotes that of the epithelial-mesenchymal transition driver Twist1. Altogether, Dullard-mediated fine-tuning of BMP signalling ensures the timed and progressive zipper-like closure of the OFT by the NCC and prevents the formation of an heart carrying the four congenital abnormalities defining the tetralogy of Fallot.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jean-François Darrigrand

    U974-Center for Research in Myology, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Mariana Valente

    U970 - Cellular, Molecular, and Physiological Mechanisms of Heart Failure, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Glenda Comai

    UMR 3738 - Department of Developmental & Stem Cell Biology, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3244-3378
  4. Pauline Martinez

    U974-Center for Research in Myology, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Maxime Petit

    U 1223 - Unité Lymphopoïèse, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8443-1531
  6. Ryuichi Nishinakamura

    Department of Kidney Development, Institute of Molecular Embryology & Genetics, Kumamoto University, Kumamoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel Sampaio Osorio

    Cytoskeletal Dynamics Lab, Institute for Molecular and Cellular Biology, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4144-8189
  8. Renault Gilles

    Institut Cochin, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Carmen Marchiol

    Institut Cochin, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Vanessa Ribes

    UMR7592 - Institut Jacques Monod, CNRS, Paris, France
    For correspondence
    vanessa.ribes@ijm.fr
    Competing interests
    The authors declare that no competing interests exist.
  11. Bruno Cadot

    U974-Center for Research in Myology, INSERM, Paris, France
    For correspondence
    cadotbruno@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1888-3898

Funding

Agence Nationale de la Recherche (ANR-14-CE09-0006-04)

  • Bruno Cadot

Ligue Contre le Cancer (PREAC2016.LCC)

  • Vanessa Ribes

Agence Nationale de la Recherche (ANR-10-LABX-73)

  • Mariana Valente

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments (APAFIS#4163-2016042809186990) were approved by the Animal Ethics Committee of Sorbonne University (Permit Number: A751320).

Copyright

© 2020, Darrigrand et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,373
    views
  • 306
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jean-François Darrigrand
  2. Mariana Valente
  3. Glenda Comai
  4. Pauline Martinez
  5. Maxime Petit
  6. Ryuichi Nishinakamura
  7. Daniel Sampaio Osorio
  8. Renault Gilles
  9. Carmen Marchiol
  10. Vanessa Ribes
  11. Bruno Cadot
(2020)
Dullard-mediated Smad1/5/8 inhibition controls mouse cardiac neural crest cells condensation and outflow tract septation
eLife 9:e50325.
https://doi.org/10.7554/eLife.50325

Share this article

https://doi.org/10.7554/eLife.50325

Further reading

    1. Developmental Biology
    Bin Zhu, Rui Wei ... Pei Liang
    Research Article

    Wing dimorphism is a common phenomenon that plays key roles in the environmental adaptation of aphid; however, the signal transduction in response to environmental cues and the regulation mechanism related to this event remain unknown. Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification that extends transcriptome variety without altering the genome, playing essential roles in numerous biological and physiological processes. Here, we present a chromosome-level genome assembly of the rose-grain aphid Metopolophium dirhodum by using PacBio long HiFi reads and Hi-C technology. The final genome assembly for M. dirhodum is 447.8 Mb, with 98.50% of the assembled sequences anchored to nine chromosomes. The contig and scaffold N50 values are 7.82 and 37.54 Mb, respectively. A total of 18,003 protein-coding genes were predicted, of which 92.05% were functionally annotated. In addition, 11,678 A-to-I RNA-editing sites were systematically identified based on this assembled M. dirhodum genome, and two synonymous A-to-I RNA-editing sites on CYP18A1 were closely associated with transgenerational wing dimorphism induced by crowding. One of these A-to-I RNA-editing sites may prevent the binding of miR-3036-5p to CYP18A1, thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring. Meanwhile, crowding can also inhibit miR-3036-5p expression and further increase CYP18A1 abundance, resulting in winged offspring. These findings support that A-to-I RNA editing is a dynamic mechanism in the regulation of transgenerational wing dimorphism in aphids and would advance our understanding of the roles of RNA editing in environmental adaptability and phenotypic plasticity.

    1. Developmental Biology
    Hanee Lee, Junsu Kang ... Junho Lee
    Research Article

    The evolutionarily conserved Hippo (Hpo) pathway has been shown to impact early development and tumorigenesis by governing cell proliferation and apoptosis. However, its post-developmental roles are relatively unexplored. Here, we demonstrate its roles in post-mitotic cells by showing that defective Hpo signaling accelerates age-associated structural and functional decline of neurons in Caenorhabditis elegans. Loss of wts-1/LATS, the core kinase of the Hpo pathway, resulted in premature deformation of touch neurons and impaired touch responses in a yap-1/YAP-dependent manner, the downstream transcriptional co-activator of LATS. Decreased movement as well as microtubule destabilization by treatment with colchicine or disruption of microtubule-stabilizing genes alleviated the neuronal deformation of wts-1 mutants. Colchicine exerted neuroprotective effects even during normal aging. In addition, the deficiency of a microtubule-severing enzyme spas-1 also led to precocious structural deformation. These results consistently suggest that hyper-stabilized microtubules in both wts-1-deficient neurons and normally aged neurons are detrimental to the maintenance of neuronal structural integrity. In summary, Hpo pathway governs the structural and functional maintenance of differentiated neurons by modulating microtubule stability, raising the possibility that the microtubule stability of fully developed neurons could be a promising target to delay neuronal aging. Our study provides potential therapeutic approaches to combat age- or disease-related neurodegeneration.