The CDK Pef1 and Protein Phosphatase 4 oppose each other for regulating cohesin binding to fission yeast chromosomes

Abstract

Cohesin has essential roles in chromosome structure, segregation and repair. Cohesin binding to chromosomes is catalyzed by the cohesin loader, Mis4 in fission yeast. How cells fine tune cohesin deposition is largely unknown. Here we provide evidence that Mis4 activity is regulated by phosphorylation of its cohesin substrate. A genetic screen for negative regulators of Mis4 yielded a CDK called Pef1, whose closest human homologue is CDK5. Inhibition of Pef1 kinase activity rescued cohesin loader deficiencies. In an otherwise wild-type background, Pef1 ablation stimulated cohesin binding to its regular sites along chromosomes while ablating Protein Phosphatase 4 had the opposite effect. Pef1 and PP4 control the phosphorylation state of the cohesin kleisin Rad21. The CDK phosphorylates Rad21 on Threonine 262. Pef1 ablation, non phosphorylatable Rad21-T262 or mutations within a Rad21 binding domain of Mis4 alleviated the effect of PP4 deficiency. Such a CDK/PP4 based regulation of cohesin loader activity could provide an efficient mechanism for translating cellular cues into a fast and accurate cohesin response.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figure 1, 2, 4, 6 and 7

Article and author information

Author details

  1. Adrien Birot

    Institut de Biochimie et Génétique Cellulaires, CNRS-Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Marta Tormos-Pérez

    Institut de Biochimie et Génétique Cellulaires, CNRS-Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Sabine Vaur

    Institut de Biochimie et Génétique Cellulaires, CNRS-Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Amélie Feytout

    Institut de Biochimie et Génétique Cellulaires, CNRS-Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Julien Jaegy

    Institut de Biochimie et Génétique Cellulaires, CNRS-Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Dácil Alonso Gil

    Institut de Biochimie et Génétique Cellulaires, CNRS-Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Stéphanie Vazquez

    Institut de Biochimie et Génétique Cellulaires, CNRS-Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Karl Ekwall

    Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  9. Jean-Paul Javerzat

    Institut de Biochimie et Génétique Cellulaires, CNRS-Université de Bordeaux, Bordeaux, France
    For correspondence
    jpaul.javerzat@ibgc.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9671-6753

Funding

Fondation ARC pour la Recherche sur le Cancer (PJA 2013 1200 205)

  • Jean-Paul Javerzat

Fondation ARC pour la Recherche sur le Cancer (PJA 20171206211)

  • Jean-Paul Javerzat

Agence Nationale de la Recherche (ANR-14-CE10-0020-01)

  • Jean-Paul Javerzat

Agence Nationale de la Recherche (ANR-10-IDEX-03-02)

  • Adrien Birot

Fondation ARC pour la Recherche sur le Cancer (DOC20160603884)

  • Adrien Birot

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Birot et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,289
    views
  • 265
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adrien Birot
  2. Marta Tormos-Pérez
  3. Sabine Vaur
  4. Amélie Feytout
  5. Julien Jaegy
  6. Dácil Alonso Gil
  7. Stéphanie Vazquez
  8. Karl Ekwall
  9. Jean-Paul Javerzat
(2020)
The CDK Pef1 and Protein Phosphatase 4 oppose each other for regulating cohesin binding to fission yeast chromosomes
eLife 9:e50556.
https://doi.org/10.7554/eLife.50556

Share this article

https://doi.org/10.7554/eLife.50556

Further reading

    1. Chromosomes and Gene Expression
    2. Evolutionary Biology
    Timothy Fuqua, Yiqiao Sun, Andreas Wagner
    Research Article

    Gene regulation is essential for life and controlled by regulatory DNA. Mutations can modify the activity of regulatory DNA, and also create new regulatory DNA, a process called regulatory emergence. Non-regulatory and regulatory DNA contain motifs to which transcription factors may bind. In prokaryotes, gene expression requires a stretch of DNA called a promoter, which contains two motifs called –10 and –35 boxes. However, these motifs may occur in both promoters and non-promoter DNA in multiple copies. They have been implicated in some studies to improve promoter activity, and in others to repress it. Here, we ask whether the presence of such motifs in different genetic sequences influences promoter evolution and emergence. To understand whether and how promoter motifs influence promoter emergence and evolution, we start from 50 ‘promoter islands’, DNA sequences enriched with –10 and –35 boxes. We mutagenize these starting ‘parent’ sequences, and measure gene expression driven by 240,000 of the resulting mutants. We find that the probability that mutations create an active promoter varies more than 200-fold, and is not correlated with the number of promoter motifs. For parent sequences without promoter activity, mutations created over 1500 new –10 and –35 boxes at unique positions in the library, but only ~0.3% of these resulted in de-novo promoter activity. Only ~13% of all –10 and –35 boxes contribute to de-novo promoter activity. For parent sequences with promoter activity, mutations created new –10 and –35 boxes in 11 specific positions that partially overlap with preexisting ones to modulate expression. We also find that –10 and –35 boxes do not repress promoter activity. Overall, our work demonstrates how promoter motifs influence promoter emergence and evolution. It has implications for predicting and understanding regulatory evolution, de novo genes, and phenotypic evolution.

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Valentin Babosha, Natalia Klimenko ... Oksana Maksimenko
    Research Article

    The male-specific lethal complex (MSL), which consists of five proteins and two non-coding roX RNAs, is involved in the transcriptional enhancement of X-linked genes to compensate for the sex chromosome monosomy in Drosophila XY males compared with XX females. The MSL1 and MSL2 proteins form the heterotetrameric core of the MSL complex and are critical for the specific recruitment of the complex to the high-affinity ‘entry’ sites (HAS) on the X chromosome. In this study, we demonstrated that the N-terminal region of MSL1 is critical for stability and functions of MSL1. Amino acid deletions and substitutions in the N-terminal region of MSL1 strongly affect both the interaction with roX2 RNA and the MSL complex binding to HAS on the X chromosome. In particular, substitution of the conserved N-terminal amino-acids 3–7 in MSL1 (MSL1GS) affects male viability similar to the inactivation of genes encoding roX RNAs. In addition, MSL1GS binds to promoters such as MSL1WT but does not co-bind with MSL2 and MSL3 to X chromosomal HAS. However, overexpression of MSL2 partially restores the dosage compensation. Thus, the interaction of MSL1 with roX RNA is critical for the efficient assembly of the MSL complex on HAS of the male X chromosome.