1. Chromosomes and Gene Expression
Download icon

The CDK Pef1 and Protein Phosphatase 4 oppose each other for regulating cohesin binding to fission yeast chromosomes

  1. Adrien Birot
  2. Marta Tormos-Pérez
  3. Sabine Vaur
  4. Amélie Feytout
  5. Julien Jaegy
  6. Dácil Alonso Gil
  7. Stéphanie Vazquez
  8. Karl Ekwall
  9. Jean-Paul Javerzat  Is a corresponding author
  1. CNRS-Université de Bordeaux, France
  2. Karolinska Institute, Sweden
Research Article
  • Cited 0
  • Views 906
  • Annotations
Cite this article as: eLife 2020;9:e50556 doi: 10.7554/eLife.50556

Abstract

Cohesin has essential roles in chromosome structure, segregation and repair. Cohesin binding to chromosomes is catalyzed by the cohesin loader, Mis4 in fission yeast. How cells fine tune cohesin deposition is largely unknown. Here we provide evidence that Mis4 activity is regulated by phosphorylation of its cohesin substrate. A genetic screen for negative regulators of Mis4 yielded a CDK called Pef1, whose closest human homologue is CDK5. Inhibition of Pef1 kinase activity rescued cohesin loader deficiencies. In an otherwise wild-type background, Pef1 ablation stimulated cohesin binding to its regular sites along chromosomes while ablating Protein Phosphatase 4 had the opposite effect. Pef1 and PP4 control the phosphorylation state of the cohesin kleisin Rad21. The CDK phosphorylates Rad21 on Threonine 262. Pef1 ablation, non phosphorylatable Rad21-T262 or mutations within a Rad21 binding domain of Mis4 alleviated the effect of PP4 deficiency. Such a CDK/PP4 based regulation of cohesin loader activity could provide an efficient mechanism for translating cellular cues into a fast and accurate cohesin response.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figure 1, 2, 4, 6 and 7

Article and author information

Author details

  1. Adrien Birot

    Institut de Biochimie et Génétique Cellulaires, CNRS-Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Marta Tormos-Pérez

    Institut de Biochimie et Génétique Cellulaires, CNRS-Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Sabine Vaur

    Institut de Biochimie et Génétique Cellulaires, CNRS-Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Amélie Feytout

    Institut de Biochimie et Génétique Cellulaires, CNRS-Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Julien Jaegy

    Institut de Biochimie et Génétique Cellulaires, CNRS-Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Dácil Alonso Gil

    Institut de Biochimie et Génétique Cellulaires, CNRS-Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Stéphanie Vazquez

    Institut de Biochimie et Génétique Cellulaires, CNRS-Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Karl Ekwall

    Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  9. Jean-Paul Javerzat

    Institut de Biochimie et Génétique Cellulaires, CNRS-Université de Bordeaux, Bordeaux, France
    For correspondence
    jpaul.javerzat@ibgc.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9671-6753

Funding

Fondation ARC pour la Recherche sur le Cancer (PJA 2013 1200 205)

  • Jean-Paul Javerzat

Fondation ARC pour la Recherche sur le Cancer (PJA 20171206211)

  • Jean-Paul Javerzat

Agence Nationale de la Recherche (ANR-14-CE10-0020-01)

  • Jean-Paul Javerzat

Agence Nationale de la Recherche (ANR-10-IDEX-03-02)

  • Adrien Birot

Fondation ARC pour la Recherche sur le Cancer (DOC20160603884)

  • Adrien Birot

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bruce Stillman, Cold Spring Harbor Laboratory, United States

Publication history

  1. Received: July 25, 2019
  2. Accepted: January 2, 2020
  3. Accepted Manuscript published: January 2, 2020 (version 1)
  4. Version of Record published: January 10, 2020 (version 2)

Copyright

© 2020, Birot et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 906
    Page views
  • 169
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    Michele Felletti et al.
    Research Article

    The ability to regulate DNA replication initiation in response to changing nutrient conditions is an important feature of most cell types. In bacteria, DNA replication is triggered by the initiator protein DnaA, which has long been suggested to respond to nutritional changes; nevertheless, the underlying mechanisms remain poorly understood. Here, we report a novel mechanism that adjusts DnaA synthesis in response to nutrient availability in Caulobacter crescentus. By performing a detailed biochemical and genetic analysis of the dnaA mRNA, we identified a sequence downstream of the dnaA start codon that inhibits DnaA translation elongation upon carbon exhaustion. Our data show that the corresponding peptide sequence, but not the mRNA secondary structure or the codon choice, is critical for this response, suggesting that specific amino acids in the growing DnaA nascent chain tune translational efficiency. Our study provides new insights into DnaA regulation and highlights the importance of translation elongation as a regulatory target. We propose that translation regulation by nascent chain sequences, like the one described, might constitute a general strategy for modulating the synthesis rate of specific proteins under changing conditions.

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Benoit Roch et al.
    Research Article

    We developed a Xrcc4M61R separation of function mouse line to overcome the embryonic lethality of Xrcc4 deficient mice. XRCC4M61R protein does not interact with Xlf, thus obliterating XRCC4-Xlf filament formation while preserving the ability to stabilize DNA Ligase IV. X4M61R mice, which are DNA repair deficient, phenocopy the Nhej1-/- (known as Xlf -/-) setting with a minor impact on the development of the adaptive immune system. The core NHEJ DNA repair factor XRCC4 is therefore not mandatory for V(D)J recombination aside from its role in stabilizing DNA ligase IV. In contrast, Xrcc4M61R mice crossed on Paxx-/-, Nhej1-/-, or Atm-/- backgrounds are severely immunocompromised, owing to aborted V(D)J recombination as in Xlf-Paxx and Xlf-Atm double KO settings. Furthermore, massive apoptosis of post-mitotic neurons causes embryonic lethality of Xrcc4M61R -Nhej1-/- double mutants. These in vivo results reveal new functional interplays between XRCC4 and PAXX, ATM and Xlf in mouse development and provide new insights in the understanding of the clinical manifestations of human XRCC4 deficient condition, in particular its absence of immune deficiency.