Metabolic signature in nucleus accumbens for anti-depressant-like effects of acetyl-L-carnitine

  1. Antoine Cherix  Is a corresponding author
  2. Thomas Larrieu
  3. Jocelyn Grosse
  4. João Rodrigues
  5. Bruce McEwen
  6. Carla Nasca
  7. Rolf Gruetter
  8. Carmen Sandi  Is a corresponding author
  1. École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
  2. Lausanne University Hospital (CHUV), Switzerland
  3. The Rockefeller University, United States

Abstract

Emerging evidence suggests that hierarchical status provide vulnerability to develop stress-induced depression. Energy metabolic changes in the nucleus accumbens (NAc) were recently related to hierarchical status and vulnerability to develop depression-like behavior. Acetyl-L-carnitine (LAC), a mitochondria-boosting supplement, has shown promising antidepressant-like effects opening therapeutic opportunities for restoring energy balance in depressed patients. We investigated the metabolic impact in the NAc of antidepressant LAC treatment in chronically-stressed mice using 1H-magnetic resonance spectroscopy (1H-MRS). High rank, but not low rank, mice, as assessed with the tube test, showed behavioral vulnerability to stress, supporting a higher susceptibility of high social rank mice to develop depressive-like behaviors. High rank mice also showed reduced levels of several energy-related metabolites in the NAc that were counteracted by LAC treatment. Therefore, we reveal a metabolic signature in the NAc for antidepressant-like effects of LAC in vulnerable mice characterized by restoration of stress-induced neuroenergetics alterations and lipid function.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Antoine Cherix

    Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    For correspondence
    ant.cherix@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4168-8273
  2. Thomas Larrieu

    Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Jocelyn Grosse

    Laboratory of Behavioral Genetics, Brain and Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. João Rodrigues

    Laboratory of Behavioral Genetics, Brain and Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Bruce McEwen

    Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Carla Nasca

    Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Rolf Gruetter

    Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Carmen Sandi

    Laboratory of Behavioral Genetics, Brain and Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    For correspondence
    carmen.sandi@epfl.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7713-8321

Funding

Swiss National Science Foundation (31003A-152614)

  • Carmen Sandi

Swiss National Science Foundation (31003A-176206)

  • Carmen Sandi

Swiss National Science Foundation - NCCR Synapsy (51NF40-158776)

  • Carmen Sandi

Swiss National Science Foundation - NCCR Synapsy (51NF40-185897)

  • Carmen Sandi

European Union's Seventh Framework Program for Research (603016)

  • Carmen Sandi

EPFL-Jebsen Research Program

  • Carmen Sandi

Center for Biomedical Imaging - EPFL

  • Rolf Gruetter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed with the approval of the Cantonal Veterinary Authorities (Vaud, Switzerland) and carried out in accordance with the European Communities Council Directive of 24 November 1986 (86/609EEC).

Copyright

© 2020, Cherix et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 430
    downloads

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.50631

Further reading

    1. Neuroscience
    Haowen Liu, Lei Li ... Zhitao Hu
    Research Article

    Munc13 plays a crucial role in short-term synaptic plasticity by regulating synaptic vesicle (SV) exocytosis and neurotransmitter release at the presynaptic terminals. However, the intricate mechanisms governing these processes have remained elusive due to the presence of multiple functional domains within Munc13, each playing distinct roles in neurotransmitter release. Here, we report a coordinated mechanism in the Caenorhabditis elegans Munc13 homolog UNC-13 that controls the functional switch of UNC-13 during synaptic transmission. Mutations disrupting the interactions of C1 and C2B with diacylglycerol (DAG) and phosphatidylinositol 4,5-bisphosphate (PIP2) on the plasma membrane induced the gain-of-function state of UNC-13L, the long UNC-13 isoform, resulting in enhanced SV release. Concurrent mutations in both domains counteracted this enhancement, highlighting the functional interdependence of C1 and C2B. Intriguingly, the individual C1 and C2B domains exhibited significantly stronger facilitation of SV release compared to the presence of both domains, supporting a mutual inhibition of C1 and C2B under basal conditions. Moreover, the N-terminal C2A and X domains exhibited opposite regulation on the functional switch of UNC-13L. Furthermore, we identified the polybasic motif in the C2B domain that facilitates SV release. Finally, we found that disruption of C1 and C2B membrane interaction in UNC-13S, the short isoform, leads to functional switch between gain-of-function and loss-of-function. Collectively, our findings provide a novel mechanism for SV exocytosis wherein UNC-13 undergoes functional switches through the coordination of its major domains, thereby regulating synaptic transmission and short-term synaptic plasticity.

    1. Neuroscience
    Muad Y Abd El Hay, Gretel B Kamm ... Jan Siemens
    Research Article

    The perception of innocuous temperatures is crucial for thermoregulation. The TRP ion channels TRPV1 and TRPM2 have been implicated in warmth detection, yet their precise roles remain unclear. A key challenge is the low prevalence of warmth-sensitive sensory neurons, comprising fewer than 10% of rodent dorsal root ganglion (DRG) neurons. Using calcium imaging of >20,000 cultured mouse DRG neurons, we uncovered distinct contributions of TRPV1 and TRPM2 to warmth sensitivity. TRPV1’s absence – and to a lesser extent absence of TRPM2 – reduces the number of neurons responding to warmth. Additionally, TRPV1 mediates the rapid, dynamic response to a warmth challenge. Behavioural tracking in a whole-body thermal preference assay revealed that these cellular differences shape nuanced thermal behaviours. Drift diffusion modelling of decision-making in mice exposed to varying temperatures showed that TRPV1 deletion impairs evidence accumulation, reducing the precision of thermal choice, while TRPM2 deletion increases overall preference for warmer environments that wildtype mice avoid. It remains unclear whether TRPM2 in DRG sensory neurons or elsewhere mediates thermal preference. Our findings suggest that different aspects of thermal information, such as stimulation speed and temperature magnitude, are encoded by distinct TRP channel mechanisms.