Lactate-mediated epigenetic reprogramming regulates formation of human pancreatic cancer-associated fibroblasts

  1. Tushar D Bhagat
  2. Dagny Von Ahrens
  3. Meelad Dawlaty
  4. Yiyu Zou
  5. Joelle Baddour
  6. Abhinav Achreja
  7. Hongyun Zhao
  8. Lifeng Yang
  9. Brijesh Patel
  10. Changsoo Kwak
  11. Gaurav S Choudhary
  12. Shanisha Gordon-Mitchell
  13. Srinivas Aluri
  14. Sanchari Bhattacharyya
  15. Srabani Sahu
  16. Yiting Yu
  17. Matthias Bartenstein
  18. Orsi Giricz
  19. Masako Suzuki
  20. Davendra Sohal
  21. Sonal Gupta
  22. Paola A Guerrero
  23. Surinder Batra
  24. Michael Goggins
  25. Ulrich Steidl
  26. John Greally
  27. Beamon Agarwal
  28. Kith Pradhan
  29. Debabrata Banerjee
  30. Deepak Nagrath  Is a corresponding author
  31. Anirban Maitra  Is a corresponding author
  32. Amit Verma  Is a corresponding author
  1. Albert Einstein College of Medicine, United States
  2. University of Michigan, United States
  3. Rutgers University, United States
  4. University of Texas MD Anderson Cancer Center, United States
  5. Cleveland Clinic, United States
  6. University of Nebraska Medical Center, United States
  7. Johns Hopkins University, United States
  8. GenomeRxUs LLC, United States

Abstract

Even though pancreatic ductal adenocarcinoma (PDAC) is associated with fibrotic stroma, the molecular pathways regulating the formation of cancer associated fibroblasts (CAFs) are not well elucidated. An epigenomic analysis of patient-derived and de-novo generated CAFs demonstrated widespread loss of cytosine methylation that was associated with overexpression of various inflammatory transcripts including CXCR4. Co-culture of neoplastic cells with CAFs led to increased invasiveness that was abrogated by inhibition of CXCR4. Metabolite tracing revealed that lactate produced by neoplastic cells leads to increased production of alpha-ketoglutarate (aKG) within mesenchymal stem cells (MSCs). In turn, aKG mediated activation of the demethylase TET enzyme led to decreased cytosine methylation and increased hydroxymethylation during de novo differentiation of MSCs to CAF. Co-injection of neoplastic cells with TET-deficient MSCs inhibited tumor growth in vivo. Thus, in PDAC, a tumor-mediated lactate flux is associated with widespread epigenomic reprogramming that is seen during CAF formation.

Data availability

Sequencing data have been deposited in GEO under accession code GSE135218.

The following data sets were generated

Article and author information

Author details

  1. Tushar D Bhagat

    Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4527-5505
  2. Dagny Von Ahrens

    Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Meelad Dawlaty

    Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yiyu Zou

    Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Joelle Baddour

    Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Abhinav Achreja

    Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Hongyun Zhao

    Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Lifeng Yang

    Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Brijesh Patel

    Rutgers University, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Changsoo Kwak

    Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Gaurav S Choudhary

    Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Shanisha Gordon-Mitchell

    Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Srinivas Aluri

    Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Sanchari Bhattacharyya

    Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Srabani Sahu

    Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Yiting Yu

    Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Matthias Bartenstein

    Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0908-770X
  18. Orsi Giricz

    Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Masako Suzuki

    Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Davendra Sohal

    Department of Medicine, Cleveland Clinic, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Sonal Gupta

    Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Paola A Guerrero

    Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  23. Surinder Batra

    University of Nebraska Medical Center, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
  24. Michael Goggins

    Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  25. Ulrich Steidl

    Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  26. John Greally

    Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6069-7960
  27. Beamon Agarwal

    GenomeRxUs LLC, Secane, United States
    Competing interests
    The authors declare that no competing interests exist.
  28. Kith Pradhan

    Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  29. Debabrata Banerjee

    Rutgers University, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  30. Deepak Nagrath

    Biointerfaces Institute, University of Michigan, Ann Arbor, United States
    For correspondence
    dnagrath@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
  31. Anirban Maitra

    Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, United States
    For correspondence
    AMaitra@mdanderson.org
    Competing interests
    The authors declare that no competing interests exist.
  32. Amit Verma

    Albert Einstein College of Medicine, New York, United States
    For correspondence
    amit.verma@einstein.yu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7592-7693

Funding

Einstein Training Program in Stem Cell Research (C34874GG)

  • Tushar D Bhagat

National Cancer Institute (T32 CA200561)

  • Dagny Von Ahrens

National Cancer Institute (R01CA227622)

  • Deepak Nagrath

National Cancer Institute (R01CA222251)

  • Deepak Nagrath

National Cancer Institute (R01CA204969)

  • Deepak Nagrath

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ralph DeBerardinis, UT Southwestern Medical Center, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC no. 20181208) protocols of the Albert Einstein College of Medicine.

Version history

  1. Received: August 21, 2019
  2. Accepted: October 27, 2019
  3. Accepted Manuscript published: October 30, 2019 (version 1)
  4. Accepted Manuscript updated: November 1, 2019 (version 2)
  5. Version of Record published: November 22, 2019 (version 3)

Copyright

© 2019, Bhagat et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,092
    views
  • 913
    downloads
  • 111
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tushar D Bhagat
  2. Dagny Von Ahrens
  3. Meelad Dawlaty
  4. Yiyu Zou
  5. Joelle Baddour
  6. Abhinav Achreja
  7. Hongyun Zhao
  8. Lifeng Yang
  9. Brijesh Patel
  10. Changsoo Kwak
  11. Gaurav S Choudhary
  12. Shanisha Gordon-Mitchell
  13. Srinivas Aluri
  14. Sanchari Bhattacharyya
  15. Srabani Sahu
  16. Yiting Yu
  17. Matthias Bartenstein
  18. Orsi Giricz
  19. Masako Suzuki
  20. Davendra Sohal
  21. Sonal Gupta
  22. Paola A Guerrero
  23. Surinder Batra
  24. Michael Goggins
  25. Ulrich Steidl
  26. John Greally
  27. Beamon Agarwal
  28. Kith Pradhan
  29. Debabrata Banerjee
  30. Deepak Nagrath
  31. Anirban Maitra
  32. Amit Verma
(2019)
Lactate-mediated epigenetic reprogramming regulates formation of human pancreatic cancer-associated fibroblasts
eLife 8:e50663.
https://doi.org/10.7554/eLife.50663

Share this article

https://doi.org/10.7554/eLife.50663

Further reading

    1. Cancer Biology
    2. Cell Biology
    Alex Weiss, Cassandra D'Amata ... Madeline N Hayes
    Research Article

    High-throughput vertebrate animal model systems for the study of patient-specific biology and new therapeutic approaches for aggressive brain tumors are currently lacking, and new approaches are urgently needed. Therefore, to build a patient-relevant in vivo model of human glioblastoma, we expressed common oncogenic variants including activated human EGFRvIII and PI3KCAH1047R under the control of the radial glial-specific promoter her4.1 in syngeneic tp53 loss-of-function mutant zebrafish. Robust tumor formation was observed prior to 45 days of life, and tumors had a gene expression signature similar to human glioblastoma of the mesenchymal subtype, with a strong inflammatory component. Within early stage tumor lesions, and in an in vivo and endogenous tumor microenvironment, we visualized infiltration of phagocytic cells, as well as internalization of tumor cells by mpeg1.1:EGFP+ microglia/macrophages, suggesting negative regulatory pressure by pro-inflammatory cell types on tumor growth at early stages of glioblastoma initiation. Furthermore, CRISPR/Cas9-mediated gene targeting of master inflammatory transcription factors irf7 or irf8 led to increased tumor formation in the primary context, while suppression of phagocyte activity led to enhanced tumor cell engraftment following transplantation into otherwise immune-competent zebrafish hosts. Altogether, we developed a genetically relevant model of aggressive human glioblastoma and harnessed the unique advantages of zebrafish including live imaging, high-throughput genetic and chemical manipulations to highlight important tumor-suppressive roles for the innate immune system on glioblastoma initiation, with important future opportunities for therapeutic discovery and optimizations.

    1. Cancer Biology
    2. Cell Biology
    Ian Lorimer
    Insight

    Establishing a zebrafish model of a deadly type of brain tumor highlights the role of the immune system in the early stages of the disease.