Interhemispherically dynamic representation of an eye movement-related activity in mouse frontal cortex

  1. Takashi R Sato  Is a corresponding author
  2. Takahide Itokazu
  3. Hironobu Osaki
  4. Makoto Ohtake
  5. Tetsuya Yamamoto
  6. Kazuhiro Sohya
  7. Takakuni Maki
  8. Tatsuo K Sato  Is a corresponding author
  1. Medical University of South Carolina, United States
  2. Osaka University, Japan
  3. Tokyo Women's Medical University, Japan
  4. Yokohama City University Graduate School of Medicine, Japan
  5. National Center of Neurology and Psychiatry, Japan
  6. Kyoto University Graduate School of Medicine, Japan
  7. Monash University, Australia

Abstract

Cortical plasticity is fundamental to motor recovery following cortical perturbation. However, it is still unclear how this plasticity is induced at a functional circuit level. Here, we investigated motor recovery and underlying neural plasticity upon optogenetic suppression of a cortical area for eye movement. Using a visually-guided eye movement task in mice, we suppressed a portion of the secondary motor cortex (MOs) that encodes contraversive eye movement. Optogenetic unilateral suppression severely impaired contraversive movement on the first day. However, on subsequent days the suppression became inefficient and capability for the movement was restored. Longitudinal two-photon calcium imaging revealed that the regained capability was accompanied by an increased number of neurons encoding for ipsiversive movement in the unsuppressed contralateral MOs. Additional suppression of the contralateral MOs impaired the recovered movement again, indicating a compensatory mechanism. Our findings demonstrate that repeated optogenetic suppression leads to functional recovery mediated by the contralateral hemisphere.

Data availability

The source data are included in the manuscript and supporting files.

Article and author information

Author details

  1. Takashi R Sato

    Department of Neuroscience, Medical University of South Carolina, Charleston, United States
    For correspondence
    satot@musc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7623-9021
  2. Takahide Itokazu

    Department of Neuro-Medical Science, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Hironobu Osaki

    Department of Physiology, Tokyo Women's Medical University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9780-0810
  4. Makoto Ohtake

    Department of Neuroscience, Medical University of South Carolina, Charleston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Tetsuya Yamamoto

    Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Kazuhiro Sohya

    Department of Mental Disorder Research, National Center of Neurology and Psychiatry, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Takakuni Maki

    Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Tatsuo K Sato

    Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
    For correspondence
    tatsuo.sato@monash.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

Japan Science and Technology Agency (PRESTO)

  • Takashi R Sato

Deutsche Forschungsgemeinschaft (SA 2575/2-1)

  • Takashi R Sato

Japan Science and Technology Agency (PRESTO)

  • Tatsuo K Sato

Deutsche Forschungsgemeinschaft (SA 2575/3-1)

  • Takashi R Sato

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Naoshige Uchida, Harvard University, United States

Ethics

Animal experimentation: All experimental procedures were approved by the University of Tuebingen (IN4/11) Medical University of South Carolina (IACUC-2018-00352), and National Center of Neurology and Psychiatry (2014005).

Version history

  1. Received: August 5, 2019
  2. Accepted: November 4, 2019
  3. Accepted Manuscript published: November 5, 2019 (version 1)
  4. Version of Record published: December 4, 2019 (version 2)

Copyright

© 2019, Sato et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,818
    views
  • 313
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Takashi R Sato
  2. Takahide Itokazu
  3. Hironobu Osaki
  4. Makoto Ohtake
  5. Tetsuya Yamamoto
  6. Kazuhiro Sohya
  7. Takakuni Maki
  8. Tatsuo K Sato
(2019)
Interhemispherically dynamic representation of an eye movement-related activity in mouse frontal cortex
eLife 8:e50855.
https://doi.org/10.7554/eLife.50855

Share this article

https://doi.org/10.7554/eLife.50855

Further reading

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.