Crumbs organizes the transport machinery by regulating apical levels of PI(4,5)P2 in Drosophila

  1. Johanna Lattner
  2. Weihua Leng
  3. Elisabeth Knust
  4. Marko Brankatschk  Is a corresponding author
  5. David Flores-Benitez  Is a corresponding author
  1. Max-Planck Institute of Molecular Cell Biology and Genetics, Germany
  2. Technische Universität Dresden, Germany

Abstract

An efficient vectorial intracellular transport machinery depends on a well-established apico-basal polarity and is a prerequisite for the function of secretory epithelia. Despite extensive knowledge on individual trafficking pathways, little is known about the mechanisms coordinating their temporal and spatial regulation. Here, we report that the polarity protein Crumbs is essential for apical plasma membrane phospholipid-homeostasis and efficient apical secretion. Through recruiting βHeavy-Spectrin and MyosinV to the apical membrane, Crumbs maintains the Rab6-, Rab11- and Rab30-dependent trafficking and regulates the lipid phosphatases Pten and Ocrl. Crumbs knock-down results in increased apical levels of PI(4,5)P2 and formation of a novel, Moesin- and PI(4,5)P2-enriched apical membrane sac containing microvilli-like structures. Our results identify Crumbs as an essential hub required to maintain the organization of the apical membrane and the physiological activity of the larval salivary gland.

Data availability

We provide as "Source data" files all the data used for statistical analyses and generation of all graphs. These files are sorted according to the Figure and the corresponding supplemental figures, which correspond to Figure 1 and its supplements, Figure 2, Figure 3 and its supplements, Figure 5 and its supplements, and Figure 6

Article and author information

Author details

  1. Johanna Lattner

    Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3421-9134
  2. Weihua Leng

    Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  3. Elisabeth Knust

    Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    Elisabeth Knust, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2732-9135
  4. Marko Brankatschk

    The Biotechnological Center, Technische Universität Dresden, Dresden, Germany
    For correspondence
    marko.brankatschk@tu-dresden.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5274-4552
  5. David Flores-Benitez

    Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    For correspondence
    flores@mpi-cbg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8244-9335

Funding

Max-Planck-Gesellschaft

  • Johanna Lattner
  • Weihua Leng
  • Elisabeth Knust
  • David Flores-Benitez

Deutsche Forschungsgemeinschaft (BR5490/2)

  • Marko Brankatschk

Deutsche Forschungsgemeinschaft (BR5490/3)

  • Marko Brankatschk

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Utpal Banerjee, University of California, Los Angeles, United States

Version history

  1. Received: August 6, 2019
  2. Accepted: October 25, 2019
  3. Accepted Manuscript published: November 7, 2019 (version 1)
  4. Version of Record published: November 27, 2019 (version 2)

Copyright

© 2019, Lattner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,301
    views
  • 450
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Johanna Lattner
  2. Weihua Leng
  3. Elisabeth Knust
  4. Marko Brankatschk
  5. David Flores-Benitez
(2019)
Crumbs organizes the transport machinery by regulating apical levels of PI(4,5)P2 in Drosophila
eLife 8:e50900.
https://doi.org/10.7554/eLife.50900

Share this article

https://doi.org/10.7554/eLife.50900

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Birol Cabukusta, Shalom Borst Pauwels ... Jacques Neefjes
    Research Article

    Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.

    1. Cell Biology
    2. Neuroscience
    Georg Kislinger, Gunar Fabig ... Martina Schifferer
    Tools and Resources

    Like other volume electron microscopy approaches, automated tape-collecting ultramicrotomy (ATUM) enables imaging of serial sections deposited on thick plastic tapes by scanning electron microscopy (SEM). ATUM is unique in enabling hierarchical imaging and thus efficient screening for target structures, as needed for correlative light and electron microscopy. However, SEM of sections on tape can only access the section surface, thereby limiting the axial resolution to the typical size of cellular vesicles with an order of magnitude lower than the acquired xy resolution. In contrast, serial-section electron tomography (ET), a transmission electron microscopy-based approach, yields isotropic voxels at full EM resolution, but requires deposition of sections on electron-stable thin and fragile films, thus making screening of large section libraries difficult and prone to section loss. To combine the strength of both approaches, we developed ‘ATUM-Tomo, a hybrid method, where sections are first reversibly attached to plastic tape via a dissolvable coating, and after screening detached and transferred to the ET-compatible thin films. As a proof-of-principle, we applied correlative ATUM-Tomo to study ultrastructural features of blood-brain barrier (BBB) leakiness around microthrombi in a mouse model of traumatic brain injury. Microthrombi and associated sites of BBB leakiness were identified by confocal imaging of injected fluorescent and electron-dense nanoparticles, then relocalized by ATUM-SEM, and finally interrogated by correlative ATUM-Tomo. Overall, our new ATUM-Tomo approach will substantially advance ultrastructural analysis of biological phenomena that require cell- and tissue-level contextualization of the finest subcellular textures.