Crumbs organizes the transport machinery by regulating apical levels of PI(4,5)P2 in Drosophila

  1. Johanna Lattner
  2. Weihua Leng
  3. Elisabeth Knust
  4. Marko Brankatschk  Is a corresponding author
  5. David Flores-Benitez  Is a corresponding author
  1. Max-Planck Institute of Molecular Cell Biology and Genetics, Germany
  2. Technische Universität Dresden, Germany

Abstract

An efficient vectorial intracellular transport machinery depends on a well-established apico-basal polarity and is a prerequisite for the function of secretory epithelia. Despite extensive knowledge on individual trafficking pathways, little is known about the mechanisms coordinating their temporal and spatial regulation. Here, we report that the polarity protein Crumbs is essential for apical plasma membrane phospholipid-homeostasis and efficient apical secretion. Through recruiting βHeavy-Spectrin and MyosinV to the apical membrane, Crumbs maintains the Rab6-, Rab11- and Rab30-dependent trafficking and regulates the lipid phosphatases Pten and Ocrl. Crumbs knock-down results in increased apical levels of PI(4,5)P2 and formation of a novel, Moesin- and PI(4,5)P2-enriched apical membrane sac containing microvilli-like structures. Our results identify Crumbs as an essential hub required to maintain the organization of the apical membrane and the physiological activity of the larval salivary gland.

Data availability

We provide as "Source data" files all the data used for statistical analyses and generation of all graphs. These files are sorted according to the Figure and the corresponding supplemental figures, which correspond to Figure 1 and its supplements, Figure 2, Figure 3 and its supplements, Figure 5 and its supplements, and Figure 6

Article and author information

Author details

  1. Johanna Lattner

    Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3421-9134
  2. Weihua Leng

    Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  3. Elisabeth Knust

    Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    Elisabeth Knust, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2732-9135
  4. Marko Brankatschk

    The Biotechnological Center, Technische Universität Dresden, Dresden, Germany
    For correspondence
    marko.brankatschk@tu-dresden.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5274-4552
  5. David Flores-Benitez

    Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    For correspondence
    flores@mpi-cbg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8244-9335

Funding

Max-Planck-Gesellschaft

  • Johanna Lattner
  • Weihua Leng
  • Elisabeth Knust
  • David Flores-Benitez

Deutsche Forschungsgemeinschaft (BR5490/2)

  • Marko Brankatschk

Deutsche Forschungsgemeinschaft (BR5490/3)

  • Marko Brankatschk

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Lattner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,340
    views
  • 454
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Johanna Lattner
  2. Weihua Leng
  3. Elisabeth Knust
  4. Marko Brankatschk
  5. David Flores-Benitez
(2019)
Crumbs organizes the transport machinery by regulating apical levels of PI(4,5)P2 in Drosophila
eLife 8:e50900.
https://doi.org/10.7554/eLife.50900

Share this article

https://doi.org/10.7554/eLife.50900

Further reading

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.