Two forms of Opa1 cooperate to complete fusion of the mitochondrial inner-membrane

  1. Yifan Ge
  2. Xiaojun Shi
  3. Sivakumar Boopathy
  4. Julie McDonald
  5. Adam W Smith
  6. Luke H Chao  Is a corresponding author
  1. Massachusetts General Hospital, United States
  2. University of Akron, United States

Abstract

Mitochondrial membrane dynamics is a cellular rheostat that relates metabolic function and organelle morphology. Using an in vitro reconstitution system, we describe a mechanism for how mitochondrial inner-membrane fusion is regulated by the ratio of two forms of Opa1. We found that the long-form of Opa1 (l-Opa1) is sufficient for membrane docking, hemifusion and low levels of content release. However, stoichiometric levels of the processed, short form of Opa1 (s-Opa1) work together with l-Opa1 to mediate efficient and fast membrane pore opening. Additionally, we found that excess levels of s-Opa1 inhibit fusion activity, as seen under conditions of altered proteostasis. These observations describe a mechanism for gating membrane fusion.

Data availability

All data generated or analyses during this study are include in the manuscript and supporting files.

Article and author information

Author details

  1. Yifan Ge

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiaojun Shi

    Department of Chemistry, University of Akron, Akron, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8060-5880
  3. Sivakumar Boopathy

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Julie McDonald

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3715-9619
  5. Adam W Smith

    Department of Chemistry, University of Akron, Akron, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5216-9017
  6. Luke H Chao

    Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
    For correspondence
    chao@molbio.mgh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4849-4148

Funding

Charles H Hood Foundation (Child Health Research Award)

  • Luke H Chao

Charles H Hood Foundation (Child Health Research Award)

  • Yifan Ge

National Science Foundation (CHE-1753060)

  • Xiaojun Shi
  • Adam W Smith

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Axel T Brunger, Stanford University, United States

Publication history

  1. Received: August 9, 2019
  2. Accepted: January 10, 2020
  3. Accepted Manuscript published: January 10, 2020 (version 1)
  4. Version of Record published: January 24, 2020 (version 2)

Copyright

© 2020, Ge et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,846
    Page views
  • 729
    Downloads
  • 66
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yifan Ge
  2. Xiaojun Shi
  3. Sivakumar Boopathy
  4. Julie McDonald
  5. Adam W Smith
  6. Luke H Chao
(2020)
Two forms of Opa1 cooperate to complete fusion of the mitochondrial inner-membrane
eLife 9:e50973.
https://doi.org/10.7554/eLife.50973

Further reading

    1. Structural Biology and Molecular Biophysics
    Hirohide Takahashi, Toshiki Yamada ... Erkan Karakas
    Research Article Updated

    Volume-regulated anion channels (VRACs) mediate volume regulatory Cl- and organic solute efflux from vertebrate cells. VRACs are heteromeric assemblies of LRRC8A-E proteins with unknown stoichiometries. Homomeric LRRC8A and LRRC8D channels have a small pore, hexameric structure. However, these channels are either non-functional or exhibit abnormal regulation and pharmacology, limiting their utility for structure-function analyses. We circumvented these limitations by developing novel homomeric LRRC8 chimeric channels with functional properties consistent with those of native VRAC/LRRC8 channels. We demonstrate here that the LRRC8C-LRRC8A(IL125) chimera comprising LRRC8C and 25 amino acids unique to the first intracellular loop (IL1) of LRRC8A has a heptameric structure like that of homologous pannexin channels. Unlike homomeric LRRC8A and LRRC8D channels, heptameric LRRC8C-LRRC8A(IL125) channels have a large-diameter pore similar to that estimated for native VRACs, exhibit normal DCPIB pharmacology, and have higher permeability to large organic anions. Lipid-like densities are located between LRRC8C-LRRC8A(IL125) subunits and occlude the channel pore. Our findings provide new insights into VRAC/LRRC8 channel structure and suggest that lipids may play important roles in channel gating and regulation.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Sean M Braet, Theresa SC Buckley ... Ganesh S Anand
    Research Article Updated

    SARS-CoV-2 emergent variants are characterized by increased viral fitness and each shows multiple mutations predominantly localized to the spike (S) protein. Here, amide hydrogen/deuterium exchange mass spectrometry has been applied to track changes in S dynamics from multiple SARS-CoV-2 variants. Our results highlight large differences across variants at two loci with impacts on S dynamics and stability. A significant enhancement in stabilization first occurred with the emergence of D614G S followed by smaller, progressive stabilization in subsequent variants. Stabilization preceded altered dynamics in the N-terminal domain, wherein Omicron BA.1 S showed the largest magnitude increases relative to other preceding variants. Changes in stabilization and dynamics resulting from S mutations detail the evolutionary trajectory of S in emerging variants. These carry major implications for SARS-CoV-2 viral fitness and offer new insights into variant-specific therapeutic development.