1. Structural Biology and Molecular Biophysics
Download icon

Multiple kinesins induce tension for smooth cargo transport

  1. Marco Tjioe
  2. Saurabh Shukla
  3. Rohit Vaidya
  4. Alice Troitskaia
  5. Carol S Bookwalter
  6. Kathleen M Trybus
  7. Yann R Chemla
  8. Paul R Selvin  Is a corresponding author
  1. University of Illinois at Urbana-Champaign, United States
  2. University of Vermont, United States
Research Article
  • Cited 2
  • Views 1,828
  • Annotations
Cite this article as: eLife 2019;8:e50974 doi: 10.7554/eLife.50974

Abstract

How cargoes move within a crowded cell—over long distances and at speeds nearly the same as when moving on unimpeded pathway—has long been mysterious. Through an in vitro force-gliding assay, which involves measuring nanometer displacement and piconewtons of force, we show that multiple mammalian kinesin-1 (from 2-8) communicate in a team by inducing tension (up to 4 pN) on the cargo. Kinesins adopt two distinct states, with one-third slowing down the microtubule and two-thirds speeding it up. Resisting kinesins tend to come off more rapidly than, and speed up when pulled by driving kinesins, implying an asymmetric tug-of-war. Furthermore, kinesins dynamically interact to overcome roadblocks, occasionally combining their forces. Consequently, multiple kinesins acting as a team may play a significant role in facilitating smooth cargo motion in a dense environment. This is one of few cases in which single molecule behavior can be connected to ensemble behavior of multiple motors.

Article and author information

Author details

  1. Marco Tjioe

    Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Saurabh Shukla

    Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rohit Vaidya

    Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alice Troitskaia

    Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Carol S Bookwalter

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kathleen M Trybus

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5583-8500
  7. Yann R Chemla

    Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9167-0234
  8. Paul R Selvin

    Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Champaign, United States
    For correspondence
    selvin@illinois.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3658-4218

Funding

National Institutes of Health (GM108578)

  • Paul R Selvin

National Science Foundation (1430124)

  • Paul R Selvin

National Institutes of Health (GM078097)

  • Kathleen M Trybus

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Taekjip Ha, Johns Hopkins University, United States

Publication history

  1. Received: August 9, 2019
  2. Accepted: October 31, 2019
  3. Accepted Manuscript published: October 31, 2019 (version 1)
  4. Version of Record published: December 10, 2019 (version 2)
  5. Version of Record updated: March 13, 2020 (version 3)

Copyright

© 2019, Tjioe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,828
    Page views
  • 287
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Structural Biology and Molecular Biophysics
    Adishesh K Narahari et al.
    Research Article Updated

    Pannexin 1 (Panx1) is a membrane channel implicated in numerous physiological and pathophysiological processes via its ability to support release of ATP and other cellular metabolites for local intercellular signaling. However, to date, there has been no direct demonstration of large molecule permeation via the Panx1 channel itself, and thus the permselectivity of Panx1 for different molecules remains unknown. To address this, we expressed, purified, and reconstituted Panx1 into proteoliposomes and demonstrated that channel activation by caspase cleavage yields a dye-permeable pore that favors flux of anionic, large-molecule permeants (up to ~1 kDa). Large cationic molecules can also permeate the channel, albeit at a much lower rate. We further show that Panx1 channels provide a molecular pathway for flux of ATP and other anionic (glutamate) and cationic signaling metabolites (spermidine). These results verify large molecule permeation directly through caspase-activated Panx1 channels that can support their many physiological roles.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Salah A Baker et al.
    Research Article Updated

    Interstitial cells of Cajal (ICC) generate pacemaker activity responsible for phasic contractions in colonic segmentation and peristalsis. ICC along the submucosal border (ICC-SM) contribute to mixing and more complex patterns of colonic motility. We show the complex patterns of Ca2+ signaling in ICC-SM and the relationship between ICC-SM Ca2+ transients and activation of smooth muscle cells (SMCs) using optogenetic tools. ICC-SM displayed rhythmic firing of Ca2+transients ~ 15 cpm and paced adjacent SMCs. The majority of spontaneous activity occurred in regular Ca2+ transients clusters (CTCs) that propagated through the network. CTCs were organized and dependent upon Ca2+ entry through voltage-dependent Ca2+ conductances, L- and T-type Ca2+ channels. Removal of Ca2+ from the external solution abolished CTCs. Ca2+ release mechanisms reduced the duration and amplitude of Ca2+ transients but did not block CTCs. These data reveal how colonic pacemaker ICC-SM exhibit complex Ca2+-firing patterns and drive smooth muscle activity and overall colonic contractions.