Can sleep protect memories from catastrophic forgetting?

  1. Oscar C González
  2. Yury Sokolov
  3. Giri P Krishnan
  4. Jean Erik Delanois
  5. Maxim Bazhenov  Is a corresponding author
  1. University of California San Diego, United States

Abstract

Continual learning remains to be an unsolved problem in artificial neural networks. The brain has evolved mechanisms to prevent catastrophic forgetting of old knowledge during new training. Building upon data suggesting importance of sleep in learning and memory, we tested a hypothesis that sleep protects old memories from forgetting. In the thalamocortical model, training a new memory interfered with previously learned old memories leading to degradation and forgetting of the old memory traces. Simulating sleep immediately after new learning reversed the damage and enhanced all memories. We found that when a new memory competed for previously allocated neuronal/synaptic resources, sleep replay changed the synaptic footprint of the old memory to allow overlapping neuronal populations to store multiple memories. Our study predicts that memory storage is dynamic, and sleep enables continual learning by combining consolidation of new memory traces with reconsolidation of old memory traces to minimize interference.

Data availability

Computational models were used exclusively in this study. The model is fully described in the Methods section and code has been deposited to https://github.com/o2gonzalez/sequenceLearningSleepCode.

Article and author information

Author details

  1. Oscar C González

    Medicine, University of California San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1302-1911
  2. Yury Sokolov

    Medicine, University of California San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Giri P Krishnan

    Medicine, University of California San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3931-7633
  4. Jean Erik Delanois

    Medicine, University of California San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Maxim Bazhenov

    Medicine, University of California San Diego, La Jolla, United States
    For correspondence
    mbazhenov@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1936-0570

Funding

Defense Advanced Research Projects Agency (HR0011-18-2-0021)

  • Maxim Bazhenov

Office of Naval Research (MURI: N00014-16-1-2829)

  • Maxim Bazhenov

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mark CW van Rossum, University of Nottingham, United Kingdom

Version history

  1. Received: January 19, 2020
  2. Accepted: July 19, 2020
  3. Accepted Manuscript published: August 4, 2020 (version 1)
  4. Version of Record published: August 20, 2020 (version 2)
  5. Version of Record updated: August 26, 2020 (version 3)

Copyright

© 2020, González et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,264
    views
  • 706
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Oscar C González
  2. Yury Sokolov
  3. Giri P Krishnan
  4. Jean Erik Delanois
  5. Maxim Bazhenov
(2020)
Can sleep protect memories from catastrophic forgetting?
eLife 9:e51005.
https://doi.org/10.7554/eLife.51005

Share this article

https://doi.org/10.7554/eLife.51005

Further reading

    1. Neuroscience
    Ya-Hui Lin, Li-Wen Wang ... Li-An Chu
    Research Article

    Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency. HIF-Clear also supports expansion microscopy and can be performed on a non-sectioned 15-year-old FFPE specimen, as well as a 3-month formalin-fixed mouse brain. Thus, HIF-Clear represents a feasible approach for researching archived FFPE specimens for future neuroscientific and 3D neuropathological analyses.

    1. Neuroscience
    Amanda Chu, Nicholas T Gordon ... Michael A McDannald
    Research Article

    Pavlovian fear conditioning has been extensively used to study the behavioral and neural basis of defensive systems. In a typical procedure, a cue is paired with foot shock, and subsequent cue presentation elicits freezing, a behavior theoretically linked to predator detection. Studies have since shown a fear conditioned cue can elicit locomotion, a behavior that - in addition to jumping, and rearing - is theoretically linked to imminent or occurring predation. A criticism of studies observing fear conditioned cue-elicited locomotion is that responding is non-associative. We gave rats Pavlovian fear discrimination over a baseline of reward seeking. TTL-triggered cameras captured 5 behavior frames/s around cue presentation. Experiment 1 examined the emergence of danger-specific behaviors over fear acquisition. Experiment 2 examined the expression of danger-specific behaviors in fear extinction. In total, we scored 112,000 frames for nine discrete behavior categories. Temporal ethograms show that during acquisition, a fear conditioned cue suppresses reward seeking and elicits freezing, but also elicits locomotion, jumping, and rearing - all of which are maximal when foot shock is imminent. During extinction, a fear conditioned cue most prominently suppresses reward seeking, and elicits locomotion that is timed to shock delivery. The independent expression of these behaviors in both experiments reveal a fear conditioned cue to orchestrate a temporally organized suite of behaviors.