1. Ecology
Download icon

Tritrophic metabolism of plant chemical defenses and its effects on herbivore and predator performance

  1. Ruo Sun
  2. Xingcong Jiang
  3. Michael Reichelt
  4. Jonathan Gershenzon
  5. Sagar Subhash Pandit  Is a corresponding author
  6. Daniel Giddings Vassão  Is a corresponding author
  1. Max Planck Institute for Chemical Ecology, Germany
  2. Indian Institute of Science Education and Research, India
Research Article
  • Cited 10
  • Views 2,426
  • Annotations
Cite this article as: eLife 2019;8:e51029 doi: 10.7554/eLife.51029

Abstract

Insect herbivores are frequently reported to metabolize plant defense compounds, but the physiological and ecological consequences are not fully understood. It has rarely been studied whether such metabolism is genuinely beneficial to the insect, and whether there are any effects on higher trophic levels. Here, we manipulated the detoxification of plant defenses in the herbivorous pest diamondback moth (Plutella xylostella) to evaluate changes in fitness, and additionally examined the effects on a predatory lacewing (Chrysoperla carnea). Silencing glucosinolate sulfatase genes resulted in the systemic accumulation of toxic isothiocyanates in P. xylostella larvae, impairing larval development and adult reproduction. The predatory lacewing C. carnea, however, efficiently degraded ingested isothiocyanates via a general conjugation pathway, with no negative effects on survival, reproduction, or even prey preference. These results illustrate how plant defenses and their detoxification strongly influence herbivore fitness but might only subtly affect a third trophic level.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for figures and figure supplements.

Article and author information

Author details

  1. Ruo Sun

    Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9861-6097
  2. Xingcong Jiang

    Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Reichelt

    Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6691-6500
  4. Jonathan Gershenzon

    Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Sagar Subhash Pandit

    Molecular and Chemical Ecology Lab, Indian Institute of Science Education and Research, Pune, India
    For correspondence
    sagar@iiserpune.ac.in
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel Giddings Vassão

    Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
    For correspondence
    vassao@ice.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8455-9298

Funding

China Scholarship Council

  • Ruo Sun

Max-Planck-Gesellschaft

  • Ruo Sun
  • Xingcong Jiang
  • Michael Reichelt
  • Jonathan Gershenzon
  • Sagar Subhash Pandit
  • Daniel Giddings Vassão

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Reviewing Editor

  1. Daniel J Kliebenstein, University of California, Davis, United States

Publication history

  1. Received: August 12, 2019
  2. Accepted: December 13, 2019
  3. Accepted Manuscript published: December 16, 2019 (version 1)
  4. Version of Record published: December 27, 2019 (version 2)

Copyright

© 2019, Sun et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,426
    Page views
  • 340
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Ecology
    Brendan Cornwell et al.
    Short Report Updated

    Climate change is dramatically changing ecosystem composition and productivity, leading scientists to consider the best approaches to map natural resistance and foster ecosystem resilience in the face of these changes. Here, we present results from a large-scale experimental assessment of coral bleaching resistance, a critical trait for coral population persistence as oceans warm, in 221 colonies of the coral Acropora hyacinthus across 37 reefs in Palau. We find that bleaching-resistant individuals inhabit most reefs but are found more often in warmer microhabitats. Our survey also found wide variation in symbiont concentration among colonies, and that colonies with lower symbiont load tended to be more bleaching-resistant. By contrast, our data show that low symbiont load comes at the cost of lower growth rate, a tradeoff that may operate widely among corals across environments. Corals with high bleaching resistance have been suggested as a source for habitat restoration or selective breeding in order to increase coral reef resilience to climate change. Our maps show where these resistant corals can be found, but the existence of tradeoffs with heat resistance may suggest caution in unilateral use of this one trait in restoration.

    1. Ecology
    Line K Bay, Emily J Howells
    Insight

    The ability of corals to adapt to global warming may involve trade-offs among the traits that influence their success as the foundational species of coral reefs.