Tritrophic metabolism of plant chemical defenses and its effects on herbivore and predator performance

  1. Ruo Sun
  2. Xingcong Jiang
  3. Michael Reichelt
  4. Jonathan Gershenzon
  5. Sagar Subhash Pandit  Is a corresponding author
  6. Daniel Giddings Vassão  Is a corresponding author
  1. Max Planck Institute for Chemical Ecology, Germany
  2. Indian Institute of Science Education and Research, India

Abstract

Insect herbivores are frequently reported to metabolize plant defense compounds, but the physiological and ecological consequences are not fully understood. It has rarely been studied whether such metabolism is genuinely beneficial to the insect, and whether there are any effects on higher trophic levels. Here, we manipulated the detoxification of plant defenses in the herbivorous pest diamondback moth (Plutella xylostella) to evaluate changes in fitness, and additionally examined the effects on a predatory lacewing (Chrysoperla carnea). Silencing glucosinolate sulfatase genes resulted in the systemic accumulation of toxic isothiocyanates in P. xylostella larvae, impairing larval development and adult reproduction. The predatory lacewing C. carnea, however, efficiently degraded ingested isothiocyanates via a general conjugation pathway, with no negative effects on survival, reproduction, or even prey preference. These results illustrate how plant defenses and their detoxification strongly influence herbivore fitness but might only subtly affect a third trophic level.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for figures and figure supplements.

Article and author information

Author details

  1. Ruo Sun

    Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9861-6097
  2. Xingcong Jiang

    Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Reichelt

    Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6691-6500
  4. Jonathan Gershenzon

    Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Sagar Subhash Pandit

    Molecular and Chemical Ecology Lab, Indian Institute of Science Education and Research, Pune, India
    For correspondence
    sagar@iiserpune.ac.in
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel Giddings Vassão

    Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
    For correspondence
    vassao@ice.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8455-9298

Funding

China Scholarship Council

  • Ruo Sun

Max-Planck-Gesellschaft

  • Ruo Sun
  • Xingcong Jiang
  • Michael Reichelt
  • Jonathan Gershenzon
  • Sagar Subhash Pandit
  • Daniel Giddings Vassão

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright

© 2019, Sun et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,464
    views
  • 477
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ruo Sun
  2. Xingcong Jiang
  3. Michael Reichelt
  4. Jonathan Gershenzon
  5. Sagar Subhash Pandit
  6. Daniel Giddings Vassão
(2019)
Tritrophic metabolism of plant chemical defenses and its effects on herbivore and predator performance
eLife 8:e51029.
https://doi.org/10.7554/eLife.51029

Share this article

https://doi.org/10.7554/eLife.51029

Further reading

    1. Developmental Biology
    2. Ecology
    Stav Talal, Jon F Harrison ... Arianne J Cease
    Research Article

    Organisms require dietary macronutrients in specific ratios to maximize performance, and variation in macronutrient requirements plays a central role in niche determination. Although it is well recognized that development and body size can have strong and predictable effects on many aspects of organismal function, we lack a predictive understanding of ontogenetic or scaling effects on macronutrient intake. We determined protein and carbohydrate intake throughout development on lab populations of locusts and compared to late instars of field populations. Self-selected protein:carbohydrate targets declined dramatically through ontogeny, due primarily to declines in mass-specific protein consumption rates which were highly correlated with declines in specific growth rates. Lab results for protein consumption rates partly matched results from field-collected locusts. However, field locusts consumed nearly double the carbohydrate, likely due to higher activity and metabolic rates. Combining our results with the available data for animals, both across species and during ontogeny, protein consumption scaled predictably and hypometrically, demonstrating a new scaling rule key for understanding nutritional ecology.

    1. Ecology
    Ivan Pokrovsky, Teja Curk ... Martin Wikelski
    Research Article

    Advances in tracking technologies have revealed the diverse migration patterns of birds, which are critical for range mapping and population estimation. Population trends are usually estimated in breeding ranges where birds remain stationary, but for species that breed in remote areas like the Arctic, these trends are often assessed in over-wintering ranges. Assessing population trends during the wintering season is challenging due to the extensive movements of birds in these ranges, which requires a deep understanding of the movement dynamics. However, these movements remain understudied, particularly in the mid-latitudes, where many Arctic breeders overwinter, increasing uncertainty in their ranges and numbers. Here, we show that the Arctic breeding raptor Rough-legged buzzard, which overwinters in the mid-latitudes, has a specific wintering strategy. After migrating ca. 1500 km from the Arctic to mid-latitudes, the birds continue to move throughout the entire over-wintering period, traveling another 1000 km southwest and then back northeast as the snowline advances. This continuous movement makes their wintering range dynamic throughout the season. In essence, this movement represents an extension of the quick migration process, albeit at a slower pace, and we have termed this migration pattern ‘foxtrot migration’, drawing an analogy to the alternating fast and slow movements of the foxtrot dance. These results highlight the potential errors in range mapping from single mid-winter surveys and emphasize the importance of this migration pattern in assessing the conservation status of bird species. Understanding this migration pattern could help to correctly estimate bird populations in over-wintering ranges, which is especially important for species that nest in hard-to-reach regions such as the Arctic.