1. Neuroscience
Download icon

Rapid regulation of vesicle priming explains synaptic facilitation despite heterogeneous vesicle:Ca2+ channel distances

  1. Janus R L Kobbersmed
  2. Andreas T Grasskamp
  3. Meida Jusyte
  4. Mathias A Böhme
  5. Susanne Ditlevsen
  6. Jakob Balslev Sørensen
  7. Alexander M Walter  Is a corresponding author
  1. University of Copenhagen, Denmark
  2. Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Germany
Research Article
  • Cited 0
  • Views 1,669
  • Annotations
Cite this article as: eLife 2020;9:e51032 doi: 10.7554/eLife.51032

Abstract

Chemical synaptic transmission relies on the Ca2+-induced fusion of transmitter-laden vesicles whose coupling distance to Ca2+-channels determines synaptic release probability and short-term plasticity, the facilitation or depression of repetitive responses. Here, using electron- and super-resolution microscopy at the Drosophila neuromuscular junction we quantitatively map vesicle:Ca2+-channel coupling distances. These are very heterogeneous, resulting in a broad spectrum of vesicular release probabilities within synapses. Stochastic simulations of transmitter release from vesicles placed according to this distribution revealed strong constraints on short-term plasticity; particularly facilitation was difficult to achieve. We show that postulated facilitation mechanisms operating via activity-dependent changes of vesicular release probability (e.g. by a facilitation fusion sensor) generate too little facilitation and too much variance. In contrast, Ca2+-dependent mechanisms rapidly increasing the number of releasable vesicles reliably reproduce short-term plasticity and variance of synaptic responses. We propose activity-dependent inhibition of vesicle un-priming or release site activation as novel facilitation mechanisms.

Article and author information

Author details

  1. Janus R L Kobbersmed

    Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0313-6205
  2. Andreas T Grasskamp

    Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5895-6529
  3. Meida Jusyte

    Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Mathias A Böhme

    Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0947-9172
  5. Susanne Ditlevsen

    Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1998-2783
  6. Jakob Balslev Sørensen

    Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5465-3769
  7. Alexander M Walter

    Molecular and Theoretical Neuroscience, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
    For correspondence
    awalter@fmp-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5646-4750

Funding

Deutsche Forschungsgemeinschaft (Emmy Noether Programme)

  • Alexander M Walter

Deutsche Forschungsgemeinschaft (Project Number 278001972 - TRR 186)

  • Alexander M Walter

Independent Research Fund Denmark (Pregraduate scholarship (8141-00007B))

  • Jakob Balslev Sørensen

Deutsche Forschungsgemeinschaft (Neurocure Fellowship)

  • Andreas T Grasskamp

Einstein Stiftung Berlin (Einstein Center for Neuroscience)

  • Meida Jusyte
  • Alexander M Walter

University of Copenhagen (Data Science Laboratory)

  • Janus R L Kobbersmed

Lundbeck Foundation (R277-2018-802)

  • Jakob Balslev Sørensen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mark CW van Rossum, University of Nottingham, United Kingdom

Publication history

  1. Received: August 12, 2019
  2. Accepted: February 14, 2020
  3. Accepted Manuscript published: February 20, 2020 (version 1)
  4. Version of Record published: April 9, 2020 (version 2)

Copyright

© 2020, Kobbersmed et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,669
    Page views
  • 399
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Rashmi Voleti et al.
    Research Article Updated

    The Ca2+ sensor synaptotagmin-1 and the SNARE complex cooperate to trigger neurotransmitter release. Structural studies elucidated three distinct synaptotagmin-1-SNARE complex binding modes involving ‘polybasic’, ‘primary’ and ‘tripartite’ interfaces of synaptotagmin-1. We investigated these interactions using NMR and fluorescence spectroscopy. Synaptotagmin-1 binds to the SNARE complex through the polybasic and primary interfaces in solution. Ca2+-free synaptotagmin-1 binds to SNARE complexes anchored on PIP2-containing nanodiscs. R398Q/R399Q and E295A/Y338W mutations at the primary interface, which strongly impair neurotransmitter release, disrupt and enhance synaptotagmin-1-SNARE complex binding, respectively. Ca2+ induces tight binding of synaptotagmin-1 to PIP2-containing nanodiscs, disrupting synaptotagmin-1-SNARE interactions. Specific effects of mutations in the polybasic region on Ca2+-dependent synaptotagmin-1-PIP2-membrane interactions correlate with their effects on release. Our data suggest that synaptotagmin-1 binds to the SNARE complex through the primary interface and that Ca2+ releases this interaction, inducing PIP2/membrane binding and allowing cooperation between synaptotagmin-1 and the SNAREs in membrane fusion to trigger release.

    1. Neuroscience
    J Wesley Maddox et al.
    Short Report

    Synapses are fundamental information processing units that rely on voltage-gated Ca2+ (Cav) channels to trigger Ca2+-dependent neurotransmitter release. Cav channels also play Ca2+-independent roles in other biological contexts, but whether they do so in axon terminals is unknown. Here, we addressed this unknown with respect to the requirement for Cav1.4 L-type channels for the formation of rod photoreceptor synapses in the retina. Using a mouse strain expressing a non-conducting mutant form of Cav1.4, we report that the Cav1.4 protein, but not its Ca2+ conductance, is required for the molecular assembly of rod synapses; however, Cav1.4 Ca2+ signals are needed for the appropriate recruitment of postsynaptic partners. Our results support a model in which presynaptic Cav channels serve both as organizers of synaptic building blocks and as sources of Ca2+ ions in building the first synapse of the visual pathway and perhaps more broadly in the nervous system.