β11-12 linker isomerization governs Acid-sensing ion channel desensitization and recovery

  1. Matthew L Rook
  2. Abby Williamson
  3. John D Lueck
  4. Maria Musgaard
  5. David M Maclean  Is a corresponding author
  1. University of Rochester Medical Center, United States
  2. University of Rochester, United States
  3. University of Ottawa, Canada

Abstract

Acid-sensing ion channels (ASICs) are neuronal sodium-selective channels activated by reductions in extracellular pH. Structures of the three presumptive functional states, high-pH resting, low-pH desensitized, and toxin-stabilized open, have all been solved for chicken ASIC1. These structures, along with prior functional data, suggest that the isomerization or flipping of the β11-12 linker in the extracellular, ligand-binding domain is an integral component of the desensitization process. To test this, we combined fast perfusion electrophysiology, molecular dynamics simulations and state-dependent non-canonical amino acid cross-linking. We find that both desensitization and recovery can be accelerated by orders of magnitude by mutating resides in this linker or the surrounding region. Furthermore, desensitization can be suppressed by trapping the linker in the resting state, indicating that isomerization of the β11-12 linker is not merely a consequence of, but a necessity for the desensitization process in ASICs.

Data availability

All data generated during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Matthew L Rook

    Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5332-7678
  2. Abby Williamson

    Biomedical Engineering Program, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. John D Lueck

    Department of Pharmacology and Physiology, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Maria Musgaard

    Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6096-9014
  5. David M Maclean

    Department of Pharmacology and Physiology, University of Rochester, Rochester, United States
    For correspondence
    David_MacLean@urmc.rochester.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8294-6075

Funding

National Institute of Neurological Disorders and Stroke (R00NS094761)

  • David M Maclean

Brain and Behavior Research Foundation (NARSAD Young Investigator Award)

  • David M Maclean

Natural Sciences and Engineering Research Council of Canada (RGPIN 2019-06864)

  • Maria Musgaard

Canada Research Chairs (950-232154)

  • Maria Musgaard

Cystic Fibrosis Foundation (LUECK18G0)

  • John D Lueck

National Institute of General Medical Sciences (T32GM068411-15)

  • Matthew L Rook

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Rook et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,610
    views
  • 210
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew L Rook
  2. Abby Williamson
  3. John D Lueck
  4. Maria Musgaard
  5. David M Maclean
(2020)
β11-12 linker isomerization governs Acid-sensing ion channel desensitization and recovery
eLife 9:e51111.
https://doi.org/10.7554/eLife.51111

Share this article

https://doi.org/10.7554/eLife.51111

Further reading

    1. Neuroscience
    Zhujun Shao, Mengya Zhang, Qing Yu
    Research Article

    When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.