β11-12 linker isomerization governs Acid-sensing ion channel desensitization and recovery

  1. Matthew L Rook
  2. Abby Williamson
  3. John D Lueck
  4. Maria Musgaard
  5. David M Maclean  Is a corresponding author
  1. University of Rochester Medical Center, United States
  2. University of Rochester, United States
  3. University of Ottawa, Canada

Abstract

Acid-sensing ion channels (ASICs) are neuronal sodium-selective channels activated by reductions in extracellular pH. Structures of the three presumptive functional states, high-pH resting, low-pH desensitized, and toxin-stabilized open, have all been solved for chicken ASIC1. These structures, along with prior functional data, suggest that the isomerization or flipping of the β11-12 linker in the extracellular, ligand-binding domain is an integral component of the desensitization process. To test this, we combined fast perfusion electrophysiology, molecular dynamics simulations and state-dependent non-canonical amino acid cross-linking. We find that both desensitization and recovery can be accelerated by orders of magnitude by mutating resides in this linker or the surrounding region. Furthermore, desensitization can be suppressed by trapping the linker in the resting state, indicating that isomerization of the β11-12 linker is not merely a consequence of, but a necessity for the desensitization process in ASICs.

Data availability

All data generated during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Matthew L Rook

    Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5332-7678
  2. Abby Williamson

    Biomedical Engineering Program, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. John D Lueck

    Department of Pharmacology and Physiology, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Maria Musgaard

    Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6096-9014
  5. David M Maclean

    Department of Pharmacology and Physiology, University of Rochester, Rochester, United States
    For correspondence
    David_MacLean@urmc.rochester.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8294-6075

Funding

National Institute of Neurological Disorders and Stroke (R00NS094761)

  • David M Maclean

Brain and Behavior Research Foundation (NARSAD Young Investigator Award)

  • David M Maclean

Natural Sciences and Engineering Research Council of Canada (RGPIN 2019-06864)

  • Maria Musgaard

Canada Research Chairs (950-232154)

  • Maria Musgaard

Cystic Fibrosis Foundation (LUECK18G0)

  • John D Lueck

National Institute of General Medical Sciences (T32GM068411-15)

  • Matthew L Rook

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Cynthia M Czajkowski, University of Wisconsin, Madison, United States

Publication history

  1. Received: August 15, 2019
  2. Accepted: February 6, 2020
  3. Accepted Manuscript published: February 7, 2020 (version 1)
  4. Version of Record published: February 25, 2020 (version 2)

Copyright

© 2020, Rook et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,239
    Page views
  • 180
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew L Rook
  2. Abby Williamson
  3. John D Lueck
  4. Maria Musgaard
  5. David M Maclean
(2020)
β11-12 linker isomerization governs Acid-sensing ion channel desensitization and recovery
eLife 9:e51111.
https://doi.org/10.7554/eLife.51111

Further reading

    1. Neuroscience
    Sophie L Fayad, Guillaume Ourties ... Nathalie Leresche
    Research Article Updated

    Cav3.2 T-type calcium channel is a major molecular actor of neuropathic pain in peripheral sensory neurons, but its involvement at the supraspinal level is almost unknown. In the anterior pretectum (APT), a hub of connectivity of the somatosensory system involved in pain perception, we show that Cav3.2 channels are expressed in a subpopulation of GABAergic neurons coexpressing parvalbumin (PV). In these PV-expressing neurons, Cav3.2 channels contribute to a high-frequency-bursting activity, which is increased in the spared nerve injury model of neuropathy. Specific deletion of Cav3.2 channels in APT neurons reduced both the initiation and maintenance of mechanical and cold allodynia. These data are a direct demonstration that centrally expressed Cav3.2 channels also play a fundamental role in pain pathophysiology.

    1. Neuroscience
    Sarah M Lurie, James E Kragel ... Joel L Voss
    Research Article

    Hippocampal-dependent memory is thought to be supported by distinct connectivity states, with strong input to the hippocampus benefitting encoding and weak input benefitting retrieval. Previous research in rodents suggests that the hippocampal theta oscillation orchestrates the transition between these states, with opposite phase angles predicting minimal versus maximal input. We investigated whether this phase dependence exists in humans using network-targeted intracranial stimulation. Intracranial local field potentials were recorded from individuals with epilepsy undergoing medically necessary stereotactic electroencephalographic recording. In each subject, biphasic bipolar direct electrical stimulation was delivered to lateral temporal sites with demonstrated connectivity to hippocampus. Lateral temporal stimulation evoked ipsilateral hippocampal potentials with distinct early and late components. Using evoked component amplitude to measure functional connectivity, we assessed whether the phase of hippocampal theta predicted relatively high versus low connectivity. We observed an increase in the continuous phase-amplitude relationship selective to the early and late components of the response evoked by lateral temporal stimulation. The maximal difference in these evoked component amplitudes occurred across 180 degrees of separation in the hippocampal theta rhythm; i.e., the greatest difference in component amplitude was observed when stimulation was delivered at theta peak versus trough. The pattern of theta phase dependence observed for hippocampus was not identified for control locations. These findings demonstrate that hippocampal receptivity to input varies with theta phase, suggesting that theta phase reflects connectivity states of human hippocampal networks. These findings confirm a putative mechanism by which neural oscillations modulate human hippocampal function.