β11-12 linker isomerization governs Acid-sensing ion channel desensitization and recovery

  1. Matthew L Rook
  2. Abby Williamson
  3. John D Lueck
  4. Maria Musgaard
  5. David M Maclean  Is a corresponding author
  1. University of Rochester Medical Center, United States
  2. University of Rochester, United States
  3. University of Ottawa, Canada

Abstract

Acid-sensing ion channels (ASICs) are neuronal sodium-selective channels activated by reductions in extracellular pH. Structures of the three presumptive functional states, high-pH resting, low-pH desensitized, and toxin-stabilized open, have all been solved for chicken ASIC1. These structures, along with prior functional data, suggest that the isomerization or flipping of the β11-12 linker in the extracellular, ligand-binding domain is an integral component of the desensitization process. To test this, we combined fast perfusion electrophysiology, molecular dynamics simulations and state-dependent non-canonical amino acid cross-linking. We find that both desensitization and recovery can be accelerated by orders of magnitude by mutating resides in this linker or the surrounding region. Furthermore, desensitization can be suppressed by trapping the linker in the resting state, indicating that isomerization of the β11-12 linker is not merely a consequence of, but a necessity for the desensitization process in ASICs.

Data availability

All data generated during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Matthew L Rook

    Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5332-7678
  2. Abby Williamson

    Biomedical Engineering Program, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. John D Lueck

    Department of Pharmacology and Physiology, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Maria Musgaard

    Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6096-9014
  5. David M Maclean

    Department of Pharmacology and Physiology, University of Rochester, Rochester, United States
    For correspondence
    David_MacLean@urmc.rochester.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8294-6075

Funding

National Institute of Neurological Disorders and Stroke (R00NS094761)

  • David M Maclean

Brain and Behavior Research Foundation (NARSAD Young Investigator Award)

  • David M Maclean

Natural Sciences and Engineering Research Council of Canada (RGPIN 2019-06864)

  • Maria Musgaard

Canada Research Chairs (950-232154)

  • Maria Musgaard

Cystic Fibrosis Foundation (LUECK18G0)

  • John D Lueck

National Institute of General Medical Sciences (T32GM068411-15)

  • Matthew L Rook

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Rook et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,600
    views
  • 209
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew L Rook
  2. Abby Williamson
  3. John D Lueck
  4. Maria Musgaard
  5. David M Maclean
(2020)
β11-12 linker isomerization governs Acid-sensing ion channel desensitization and recovery
eLife 9:e51111.
https://doi.org/10.7554/eLife.51111

Share this article

https://doi.org/10.7554/eLife.51111

Further reading

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.