TORC2-Gad8 dependent myosin phosphorylation modulates regulation by calcium

  1. Karen Baker
  2. Irene A Gyamfi
  3. Gregory I Mashanov
  4. Justin E Molloy
  5. Michael A Geeves
  6. Daniel P Mulvihill  Is a corresponding author
  1. University of Kent, United Kingdom
  2. The Francis Crick Institute, United Kingdom

Abstract

Cells respond to changes in their environment through signalling networks that modulate cytoskeleton and membrane organisation to coordinate cell cycle progression, polarised cell growth and multicellular development. Here, we define a novel regulatory mechanism by which the motor activity and function of the fission yeast type 1 myosin, Myo1, is modulated by TORC2 signalling dependent phosphorylation. Phosphorylation of the conserved serine at position 742 within the neck region changes both the conformation of the neck region and the interactions between Myo1 and its associating calmodulin light chains. S742 phosphorylation thereby couples calcium and TOR signalling networks in the modulation of myosin-1 dynamics to co-ordinate actin polymerisation and membrane reorganisation at sites of endocytosis and polarised cell growth in response to environmental and cell cycle cues.

Data availability

Raw data files for Figures and Tables, and data analysis spreadsheets, are uploaded onto the University of Kent Data Repository server and are available at the following location: https://data.kent.ac.uk/60/

The following data sets were generated

Article and author information

Author details

  1. Karen Baker

    School of Biosciences, University of Kent, Canterbury, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Irene A Gyamfi

    School of Biosciences, University of Kent, Canterbury, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Gregory I Mashanov

    The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Justin E Molloy

    The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8307-2450
  5. Michael A Geeves

    School of Biosciences, University of Kent, Canterbury, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9364-8898
  6. Daniel P Mulvihill

    School of Biosciences, University of Kent, Canterbury, United Kingdom
    For correspondence
    D.P.Mulvihill@kent.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2502-5274

Funding

Biotechnology and Biological Sciences Research Council (BB/J012793/1)

  • Michael A Geeves
  • Daniel P Mulvihill

Biotechnology and Biological Sciences Research Council (BB/M015130/1)

  • Irene A Gyamfi
  • Daniel P Mulvihill

Royal Society (Industry Fellowship)

  • Daniel P Mulvihill

Cancer Research UK (FC001119)

  • Gregory I Mashanov
  • Justin E Molloy

Medical Research Council (FC001119)

  • Gregory I Mashanov
  • Justin E Molloy

Wellcome (FC001119)

  • Gregory I Mashanov
  • Justin E Molloy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Baker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,212
    views
  • 270
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Karen Baker
  2. Irene A Gyamfi
  3. Gregory I Mashanov
  4. Justin E Molloy
  5. Michael A Geeves
  6. Daniel P Mulvihill
(2019)
TORC2-Gad8 dependent myosin phosphorylation modulates regulation by calcium
eLife 8:e51150.
https://doi.org/10.7554/eLife.51150

Share this article

https://doi.org/10.7554/eLife.51150

Further reading

    1. Cell Biology
    Ryan M Finnerty, Daniel J Carulli ... Wipawee Winuthayanon
    Research Article

    The oviduct is the site of fertilization and preimplantation embryo development in mammals. Evidence suggests that gametes alter oviductal gene expression. To delineate the adaptive interactions between the oviduct and gamete/embryo, we performed a multi-omics characterization of oviductal tissues utilizing bulk RNA-sequencing (RNA-seq), single-cell RNA-sequencing (scRNA-seq), and proteomics collected from distal and proximal at various stages after mating in mice. We observed robust region-specific transcriptional signatures. Specifically, the presence of sperm induces genes involved in pro-inflammatory responses in the proximal region at 0.5 days post-coitus (dpc). Genes involved in inflammatory responses were produced specifically by secretory epithelial cells in the oviduct. At 1.5 and 2.5 dpc, genes involved in pyruvate and glycolysis were enriched in the proximal region, potentially providing metabolic support for developing embryos. Abundant proteins in the oviductal fluid were differentially observed between naturally fertilized and superovulated samples. RNA-seq data were used to identify transcription factors predicted to influence protein abundance in the proteomic data via a novel machine learning model based on transformers of integrating transcriptomics and proteomics data. The transformers identified influential transcription factors and correlated predictive protein expressions in alignment with the in vivo-derived data. Lastly, we found some differences between inflammatory responses in sperm-exposed mouse oviducts compared to hydrosalpinx Fallopian tubes from patients. In conclusion, our multi-omics characterization and subsequent in vivo confirmation of proteins/RNAs indicate that the oviduct is adaptive and responsive to the presence of sperm and embryos in a spatiotemporal manner.

    1. Cell Biology
    Weihua Wang, Junqiao Xing ... Zhangfeng Hu
    Research Article

    Existence of cilia in the last eukaryotic common ancestor raises a fundamental question in biology: how the transcriptional regulation of ciliogenesis has evolved? One conceptual answer to this question is by an ancient transcription factor regulating ciliary gene expression in both uni- and multicellular organisms, but examples of such transcription factors in eukaryotes are lacking. Previously, we showed that an ancient transcription factor X chromosome-associated protein 5 (Xap5) is required for flagellar assembly in Chlamydomonas. Here, we show that Xap5 and Xap5-like (Xap5l) are two conserved pairs of antagonistic transcription regulators that control ciliary transcriptional programs during spermatogenesis. Male mice lacking either Xap5 or Xap5l display infertility, as a result of meiotic prophase arrest and sperm flagella malformation, respectively. Mechanistically, Xap5 positively regulates the ciliary gene expression by activating the key regulators including Foxj1 and Rfx families during the early stage of spermatogenesis. In contrast, Xap5l negatively regulates the expression of ciliary genes via repressing these ciliary transcription factors during the spermiogenesis stage. Our results provide new insights into the mechanisms by which temporal and spatial transcription regulators are coordinated to control ciliary transcriptional programs during spermatogenesis.