TORC2-Gad8 dependent myosin phosphorylation modulates regulation by calcium

  1. Karen Baker
  2. Irene A Gyamfi
  3. Gregory I Mashanov
  4. Justin E Molloy
  5. Michael A Geeves
  6. Daniel P Mulvihill  Is a corresponding author
  1. University of Kent, United Kingdom
  2. The Francis Crick Institute, United Kingdom

Abstract

Cells respond to changes in their environment through signalling networks that modulate cytoskeleton and membrane organisation to coordinate cell cycle progression, polarised cell growth and multicellular development. Here, we define a novel regulatory mechanism by which the motor activity and function of the fission yeast type 1 myosin, Myo1, is modulated by TORC2 signalling dependent phosphorylation. Phosphorylation of the conserved serine at position 742 within the neck region changes both the conformation of the neck region and the interactions between Myo1 and its associating calmodulin light chains. S742 phosphorylation thereby couples calcium and TOR signalling networks in the modulation of myosin-1 dynamics to co-ordinate actin polymerisation and membrane reorganisation at sites of endocytosis and polarised cell growth in response to environmental and cell cycle cues.

Data availability

Raw data files for Figures and Tables, and data analysis spreadsheets, are uploaded onto the University of Kent Data Repository server and are available at the following location: https://data.kent.ac.uk/60/

The following data sets were generated

Article and author information

Author details

  1. Karen Baker

    School of Biosciences, University of Kent, Canterbury, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Irene A Gyamfi

    School of Biosciences, University of Kent, Canterbury, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Gregory I Mashanov

    The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Justin E Molloy

    The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8307-2450
  5. Michael A Geeves

    School of Biosciences, University of Kent, Canterbury, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9364-8898
  6. Daniel P Mulvihill

    School of Biosciences, University of Kent, Canterbury, United Kingdom
    For correspondence
    D.P.Mulvihill@kent.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2502-5274

Funding

Biotechnology and Biological Sciences Research Council (BB/J012793/1)

  • Michael A Geeves
  • Daniel P Mulvihill

Biotechnology and Biological Sciences Research Council (BB/M015130/1)

  • Irene A Gyamfi
  • Daniel P Mulvihill

Royal Society (Industry Fellowship)

  • Daniel P Mulvihill

Cancer Research UK (FC001119)

  • Gregory I Mashanov
  • Justin E Molloy

Medical Research Council (FC001119)

  • Gregory I Mashanov
  • Justin E Molloy

Wellcome (FC001119)

  • Gregory I Mashanov
  • Justin E Molloy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Baker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,196
    views
  • 269
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Karen Baker
  2. Irene A Gyamfi
  3. Gregory I Mashanov
  4. Justin E Molloy
  5. Michael A Geeves
  6. Daniel P Mulvihill
(2019)
TORC2-Gad8 dependent myosin phosphorylation modulates regulation by calcium
eLife 8:e51150.
https://doi.org/10.7554/eLife.51150

Share this article

https://doi.org/10.7554/eLife.51150

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Armando Montoya-Garcia, Idaira M Guerrero-Fonseca ... Michael Schnoor
    Research Article

    Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.

    1. Cell Biology
    Parijat Biswas, Priyanka Roy ... Deepak Kumar Sinha
    Research Article

    The excessive cosolute densities in the intracellular fluid create a physicochemical condition called macromolecular crowding (MMC). Intracellular MMC entropically maintains the biochemical thermodynamic equilibria by favouring associative reactions while hindering transport processes. Rapid cell volume shrinkage during extracellular hypertonicity elevates the MMC and disrupts the equilibria, potentially ushering cell death. Consequently, cells actively counter the hypertonic stress through regulatory volume increase (RVI) and restore the MMC homeostasis. Here, we establish fluorescence anisotropy of EGFP as a reliable tool for studying cellular MMC and explore the spatiotemporal dynamics of MMC during cell volume instabilities under multiple conditions. Our studies reveal that the actin cytoskeleton enforces spatially varying MMC levels inside adhered cells. Within cell populations, MMC is uncorrelated with nuclear DNA content but anti-correlated with the cell spread area. Although different cell lines have statistically similar MMC distributions, their responses to extracellular hypertonicity vary. The intensity of the extracellular hypertonicity determines a cell's ability for RVI, which correlates with Nuclear Factor Kappa Beta (NFkB) activation. Pharmacological inhibition and knockdown experiments reveal that Tumour Necrosis Factor Receptor 1 (TNFR1) initiates the hypertonicity induced NFkB signalling and RVI. At severe hypertonicities, the elevated MMC amplifies cytoplasmic microviscosity and hinders Receptor Interacting Protein Kinase 1 (RIPK1) recruitment at the TNFR1 complex, incapacitating the TNFR1-NFkB signalling and consequently, RVI. Together, our studies unveil the involvement of TNFR1-NFkB signalling in modulating RVI and demonstrate the pivotal role of MMC in determining cellular osmoadaptability.