1. Cell Biology
Download icon

TORC2-Gad8 dependent myosin phosphorylation modulates regulation by calcium

  1. Karen Baker
  2. Irene A Gyamfi
  3. Gregory I Mashanov
  4. Justin E Molloy
  5. Michael A Geeves
  6. Daniel P Mulvihill  Is a corresponding author
  1. University of Kent, United Kingdom
  2. The Francis Crick Institute, United Kingdom
Research Article
  • Cited 0
  • Views 891
  • Annotations
Cite this article as: eLife 2019;8:e51150 doi: 10.7554/eLife.51150

Abstract

Cells respond to changes in their environment through signalling networks that modulate cytoskeleton and membrane organisation to coordinate cell cycle progression, polarised cell growth and multicellular development. Here, we define a novel regulatory mechanism by which the motor activity and function of the fission yeast type 1 myosin, Myo1, is modulated by TORC2 signalling dependent phosphorylation. Phosphorylation of the conserved serine at position 742 within the neck region changes both the conformation of the neck region and the interactions between Myo1 and its associating calmodulin light chains. S742 phosphorylation thereby couples calcium and TOR signalling networks in the modulation of myosin-1 dynamics to co-ordinate actin polymerisation and membrane reorganisation at sites of endocytosis and polarised cell growth in response to environmental and cell cycle cues.

Article and author information

Author details

  1. Karen Baker

    School of Biosciences, University of Kent, Canterbury, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Irene A Gyamfi

    School of Biosciences, University of Kent, Canterbury, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Gregory I Mashanov

    The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Justin E Molloy

    The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8307-2450
  5. Michael A Geeves

    School of Biosciences, University of Kent, Canterbury, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9364-8898
  6. Daniel P Mulvihill

    School of Biosciences, University of Kent, Canterbury, United Kingdom
    For correspondence
    D.P.Mulvihill@kent.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2502-5274

Funding

Biotechnology and Biological Sciences Research Council (BB/J012793/1)

  • Michael A Geeves
  • Daniel P Mulvihill

Biotechnology and Biological Sciences Research Council (BB/M015130/1)

  • Irene A Gyamfi
  • Daniel P Mulvihill

Royal Society (Industry Fellowship)

  • Daniel P Mulvihill

Cancer Research UK (FC001119)

  • Gregory I Mashanov
  • Justin E Molloy

Medical Research Council (FC001119)

  • Gregory I Mashanov
  • Justin E Molloy

Wellcome (FC001119)

  • Gregory I Mashanov
  • Justin E Molloy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Pekka Lappalainen, University of Helsinki, Finland

Publication history

  1. Received: August 16, 2019
  2. Accepted: September 26, 2019
  3. Accepted Manuscript published: September 30, 2019 (version 1)
  4. Version of Record published: October 21, 2019 (version 2)

Copyright

© 2019, Baker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 891
    Page views
  • 236
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    Mihaela Jagrić et al.
    Research Article

    During metaphase, chromosome position at the spindle equator is regulated by the forces exerted by kinetochore microtubules and polar ejection forces. However, the role of forces arising from mechanical coupling of sister kinetochore fibers with bridging fibers in chromosome alignment is unknown. Here we develop an optogenetic approach for acute removal of PRC1 to partially disassemble bridging fibers and show that they promote chromosome alignment. Tracking of the plus-end protein EB3 revealed longer antiparallel overlaps of bridging microtubules upon PRC1 removal, which was accompanied by misaligned and lagging kinetochores. Kif4A/kinesin-4 and Kif18A/kinesin-8 were found within the bridging fiber and largely lost upon PRC1 removal, suggesting that these proteins regulate the overlap length of bridging microtubules. We propose that PRC1-mediated crosslinking of bridging microtubules and recruitment of kinesins to the bridging fiber promotes chromosome alignment by overlap length-dependent forces transmitted to the associated kinetochore fibers.

    1. Cell Biology
    Xiaoxue Zhou et al.
    Research Article

    In budding yeast, the mitotic exit network (MEN), a GTPase signaling cascade, integrates spatial and temporal cues to promote exit from mitosis. This signal integration requires transmission of a signal generated on the cytoplasmic face of spindle pole bodies (SPBs; yeast equivalent of centrosomes) to the nucleolus, where the MEN effector protein Cdc14 resides. Here, we show that the MEN activating signal at SPBs is relayed to Cdc14 in the nucleolus through the dynamic localization of its terminal kinase complex Dbf2-Mob1. Cdc15, the protein kinase that activates Dbf2-Mob1 at SPBs, also regulates its nuclear access. Once in the nucleus, priming phosphorylation of Cfi1/Net1, the nucleolar anchor of Cdc14, by the Polo-like kinase Cdc5 targets Dbf2-Mob1 to the nucleolus. Nucleolar Dbf2-Mob1 then phosphorylates Cfi1/Net1 and Cdc14, activating Cdc14. The kinase-primed transmission of the MEN signal from the cytoplasm to the nucleolus exemplifies how signaling cascades can bridge distant inputs and responses.