TORC2-Gad8 dependent myosin phosphorylation modulates regulation by calcium

  1. Karen Baker
  2. Irene A Gyamfi
  3. Gregory I Mashanov
  4. Justin E Molloy
  5. Michael A Geeves
  6. Daniel P Mulvihill  Is a corresponding author
  1. University of Kent, United Kingdom
  2. The Francis Crick Institute, United Kingdom

Abstract

Cells respond to changes in their environment through signalling networks that modulate cytoskeleton and membrane organisation to coordinate cell cycle progression, polarised cell growth and multicellular development. Here, we define a novel regulatory mechanism by which the motor activity and function of the fission yeast type 1 myosin, Myo1, is modulated by TORC2 signalling dependent phosphorylation. Phosphorylation of the conserved serine at position 742 within the neck region changes both the conformation of the neck region and the interactions between Myo1 and its associating calmodulin light chains. S742 phosphorylation thereby couples calcium and TOR signalling networks in the modulation of myosin-1 dynamics to co-ordinate actin polymerisation and membrane reorganisation at sites of endocytosis and polarised cell growth in response to environmental and cell cycle cues.

Data availability

Raw data files for Figures and Tables, and data analysis spreadsheets, are uploaded onto the University of Kent Data Repository server and are available at the following location: https://data.kent.ac.uk/60/

The following data sets were generated

Article and author information

Author details

  1. Karen Baker

    School of Biosciences, University of Kent, Canterbury, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Irene A Gyamfi

    School of Biosciences, University of Kent, Canterbury, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Gregory I Mashanov

    The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Justin E Molloy

    The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8307-2450
  5. Michael A Geeves

    School of Biosciences, University of Kent, Canterbury, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9364-8898
  6. Daniel P Mulvihill

    School of Biosciences, University of Kent, Canterbury, United Kingdom
    For correspondence
    D.P.Mulvihill@kent.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2502-5274

Funding

Biotechnology and Biological Sciences Research Council (BB/J012793/1)

  • Michael A Geeves
  • Daniel P Mulvihill

Biotechnology and Biological Sciences Research Council (BB/M015130/1)

  • Irene A Gyamfi
  • Daniel P Mulvihill

Royal Society (Industry Fellowship)

  • Daniel P Mulvihill

Cancer Research UK (FC001119)

  • Gregory I Mashanov
  • Justin E Molloy

Medical Research Council (FC001119)

  • Gregory I Mashanov
  • Justin E Molloy

Wellcome (FC001119)

  • Gregory I Mashanov
  • Justin E Molloy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Baker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,214
    views
  • 270
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Karen Baker
  2. Irene A Gyamfi
  3. Gregory I Mashanov
  4. Justin E Molloy
  5. Michael A Geeves
  6. Daniel P Mulvihill
(2019)
TORC2-Gad8 dependent myosin phosphorylation modulates regulation by calcium
eLife 8:e51150.
https://doi.org/10.7554/eLife.51150

Share this article

https://doi.org/10.7554/eLife.51150

Further reading

    1. Cell Biology
    Peipei Xu, Rui Zhang ... Wenxiang Meng
    Research Article

    The reorientation of the Golgi apparatus is crucial for cell migration and is regulated by multipolarity signals. A number of non-centrosomal microtubules anchor at the surface of the Golgi apparatus and play a vital role in the Golgi reorientation, but how the Golgi are regulated by polarity signals remains unclear. Calmodulin-regulated spectrin-associated protein 2 (CAMSAP2) is a protein that anchors microtubules to the Golgi, a cellular organelle. Our research indicates that CAMSAP2 is dynamically localized at the Golgi during its reorientation processing. Further research shows that CAMSAP2 is potentially regulated by a polarity signaling molecule called MARK2, which interacts with CAMSAP2. We used mass spectrometry to find that MARK2 phosphorylates CAMSAP2 at serine-835, which affects its interaction with the Golgi-associated protein USO1 but not with CG-NAP or CLASPs. This interaction is critical for anchoring microtubules to the Golgi during cell migration, altering microtubule polarity distribution, and aiding Golgi reorientation. Our study reveals an important signaling pathway in Golgi reorientation during cell migration, which can provide insights for research in cancer cell migration, immune response, and targeted drug development.

    1. Cell Biology
    Melanie Lianne Engelfriet, Yanwu Guo ... Rafal Ciosk
    Research Article

    In nature, many animals respond to cold by entering hibernation, while in clinical settings, controlled cooling is used in transplantation and emergency medicine. However, the molecular mechanisms that enable cells to survive severe cold are still not fully understood. One key aspect of cold adaptation is the global downregulation of protein synthesis. Studying it in the nematode Caenorhabditis elegans, we find that the translation of most mRNAs continues in the cold, albeit at a slower rate, and propose that cold-specific gene expression is regulated primarily at the transcription level. Supporting this idea, we found that the transcription of certain cold-induced genes is linked to the activation of unfolded protein response (UPR) through the conserved IRE-1/XBP-1 signaling pathway. Our findings suggest that this pathway is triggered by cold-induced perturbations in proteins and lipids within the endoplasmic reticulum, and that its activation is beneficial for cold survival.