Presynaptic GABAB receptors functionally uncouple somatostatin interneurons from the active hippocampal network

  1. Sam A Booker  Is a corresponding author
  2. Harumi Harada
  3. Claudio Elgueta
  4. Julia Bank
  5. Marlene Bartos
  6. Akos Kulik  Is a corresponding author
  7. Imre Vida  Is a corresponding author
  1. University of Edinburgh, United Kingdom
  2. University of Freiburg, Germany
  3. Charité - Universitätsmedizin Berlin, Germany

Abstract

Information processing in cortical neuronal networks relies on properly balanced excitatory and inhibitory neurotransmission. A ubiquitous motif for maintaining this balance is the somatostatin interneuron (SOM-IN) feedback microcircuit. Here, we investigate the modulation of this microcircuit by presynaptic GABAB receptors (GABABRs) in the rodent hippocampus. Whole-cell recordings from SOM-INs revealed that both excitatory and inhibitory synaptic inputs are strongly inhibited by GABABRs, while optogenetic activation of the interneurons shows that their inhibitory output is also strongly suppressed. Electron microscopic analysis of immunogold-labelled freeze-fracture replicas confirms that GABABRs are highly expressed presynaptically at both input and output synapses of SOM-INs. Activation of GABABRs selectively suppresses the recruitment of SOM-INs during gamma oscillations induced in vitro. Thus, axonal GABABRs are positioned to efficiently control the input and output synapses of SOM-INs and can functionally uncouple them from local network with implications for rhythmogenesis and the balance of entorhinal versus intrahippocampal afferents.

Data availability

Quantitative electrophysiological, optogenetic and immuno-electron microscopic data presented in the figures and text has been deposited to Dryad (doi:10.5061/dryad.gt160v2).

The following data sets were generated

Article and author information

Author details

  1. Sam A Booker

    Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    sbooker@exseed.ed.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1980-9873
  2. Harumi Harada

    Institute of Physiology, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7429-7896
  3. Claudio Elgueta

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  4. Julia Bank

    Institute of Physiology, University of Freiburg, Freiburg, Germany
    Competing interests
    No competing interests declared.
  5. Marlene Bartos

    Institute for Physiology I, University of Freiburg, Freiburg, Germany
    Competing interests
    Marlene Bartos, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9741-1946
  6. Akos Kulik

    Institute of Physiology, University of Freiburg, Freiburg, Germany
    For correspondence
    akos.kulik@physiologie.uni-freiburg.de
    Competing interests
    No competing interests declared.
  7. Imre Vida

    Institute for Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
    For correspondence
    imre.vida@charite.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3214-2233

Funding

Deutsche Forschungsgemeinschaft (FOR 2134)

  • Marlene Bartos
  • Akos Kulik
  • Imre Vida

Deutsche Forschungsgemeinschaft (BIOSS-2)

  • Akos Kulik

Tenovus

  • Imre Vida

McNaught Bequest, University of Glasgow

  • Sam A Booker
  • Imre Vida

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Care and handling of the animals prior to and during the experimental procedures followed European Union and national regulations (German Animal Welfare Act; ASPA, United Kingdom Home Office) and all experiments were performed in accordance with institutional guidelines (Charité - Universitätmedizin Berlin; University of Freiburg, Freiburg, Germany), with permissions from local authorities (LaGeSo, Berlin, T-0215/11 LaGeSo; Freiburg, X14/11H and 35-9185.81/G-19/59).

Copyright

© 2020, Booker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,797
    views
  • 412
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sam A Booker
  2. Harumi Harada
  3. Claudio Elgueta
  4. Julia Bank
  5. Marlene Bartos
  6. Akos Kulik
  7. Imre Vida
(2020)
Presynaptic GABAB receptors functionally uncouple somatostatin interneurons from the active hippocampal network
eLife 9:e51156.
https://doi.org/10.7554/eLife.51156

Share this article

https://doi.org/10.7554/eLife.51156

Further reading

    1. Neuroscience
    GVS Devakinandan, Mark Terasaki, Adish Dani
    Research Article

    Specialized chemosensory signals elicit innate social behaviors in individuals of several vertebrate species, a process that is mediated via the accessory olfactory system (AOS). The AOS comprising the peripheral sensory vomeronasal organ has evolved elaborate molecular and cellular mechanisms to detect chemo signals. To gain insight into the cell types, developmental gene expression patterns, and functional differences amongst neurons, we performed single-cell transcriptomics of the mouse vomeronasal sensory epithelium. Our analysis reveals diverse cell types with gene expression patterns specific to each, which we made available as a searchable web resource accessed from https://www.scvnoexplorer.com. Pseudo-time developmental analysis indicates that neurons originating from common progenitors diverge in their gene expression during maturation with transient and persistent transcription factor expression at critical branch points. Comparative analysis across two of the major neuronal subtypes that express divergent GPCR families and the G-protein subunits Gnai2 or Gnao1, reveals significantly higher expression of endoplasmic reticulum (ER) associated genes within Gnao1 neurons. In addition, differences in ER content and prevalence of cubic membrane ER ultrastructure revealed by electron microscopy, indicate fundamental differences in ER function.

    1. Medicine
    2. Neuroscience
    Chi Zhang, Qian Huang ... Yun Guan
    Research Article

    Pain after surgery causes significant suffering. Opioid analgesics cause severe side effects and accidental death. Therefore, there is an urgent need to develop non-opioid therapies for managing post-surgical pain. Local application of Clarix Flo (FLO), a human amniotic membrane (AM) product, attenuated established post-surgical pain hypersensitivity without exhibiting known side effects of opioid use in mice. This effect was achieved through direct inhibition of nociceptive dorsal root ganglion (DRG) neurons via CD44-dependent pathways. We further purified the major matrix component, the heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) from human AM that has greater purity and water solubility than FLO. HC-HA/PTX3 replicated FLO-induced neuronal and pain inhibition. Mechanistically, HC-HA/PTX3-induced cytoskeleton rearrangements to inhibit sodium current and high-voltage activated calcium current on nociceptive DRG neurons, suggesting it is a key bioactive component mediating pain relief. Collectively, our findings highlight the potential of naturally derived biologics from human birth tissues as an effective non-opioid treatment for post-surgical pain. Moreover, we unravel the underlying neuronal mechanisms of pain inhibition induced by FLO and HC-HA/PTX3.