Insights into the dynamic control of breathing revealed through cell-type-specific responses to substance P

  1. Nathan A Baertsch  Is a corresponding author
  2. Jan-Marino Ramirez  Is a corresponding author
  1. Seattle Children's Research Institute, United States

Abstract

The rhythm generating network for breathing must continuously adjust to changing metabolic and behavioral demands. Here, we examined network-based mechanisms in the mouse preBӧtzinger complex using substance P, a potent excitatory modulator of breathing frequency and stability, as a tool to dissect network properties that underlie dynamic breathing. We find that substance P does not alter the balance of excitation and inhibition during breaths or the duration of the resulting refractory period. Instead, mechanisms of recurrent excitation between breaths are enhanced such that the rate that excitation percolates through the network is increased. We propose a conceptual framework in which three distinct phases of inspiration, the burst phase, refractory phase, and percolation phase, can be differentially modulated to control breathing dynamics and stability. Unraveling mechanisms that support this dynamic control may improve our understanding of nervous system disorders that destabilize breathing, many of which involve changes in brainstem neuromodulatory systems.

Data availability

All data generated during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

Article and author information

Author details

  1. Nathan A Baertsch

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    For correspondence
    nathan.baertsch@seattlechildrens.org
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1589-5575
  2. Jan-Marino Ramirez

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    For correspondence
    jan.ramirez@seattlechildrens.org
    Competing interests
    Jan-Marino Ramirez, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5626-3999

Funding

National Heart, Lung, and Blood Institute (R01 HL126523)

  • Jan-Marino Ramirez

National Heart, Lung, and Blood Institute (R01 HL144801)

  • Jan-Marino Ramirez

National Heart, Lung, and Blood Institute (K99 HL145004)

  • Nathan A Baertsch

National Heart, Lung, and Blood Institute (F32 HL134207)

  • Nathan A Baertsch

National Heart, Lung, and Blood Institute (P01 HL090554)

  • Jan-Marino Ramirez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments and animal procedures were approved by the Seattle Children's Research Institute's Animal Care and Use Committee and conducted in accordance with the National Institutes of Health guidelines. (approved protocol #15981)

Copyright

© 2019, Baertsch & Ramirez

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,188
    views
  • 171
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nathan A Baertsch
  2. Jan-Marino Ramirez
(2019)
Insights into the dynamic control of breathing revealed through cell-type-specific responses to substance P
eLife 8:e51350.
https://doi.org/10.7554/eLife.51350

Share this article

https://doi.org/10.7554/eLife.51350

Further reading

    1. Neuroscience
    Jian Dong, Mian Chen ... Matthijs Verhage
    Research Article

    Dense core vesicles (DCVs) transport and release various neuropeptides and neurotrophins that control diverse brain functions, but the DCV secretory pathway remains poorly understood. Here, we tested a prediction emerging from invertebrate studies about the crucial role of the intracellular trafficking GTPase Rab10, by assessing DCV exocytosis at single-cell resolution upon acute Rab10 depletion in mature mouse hippocampal neurons, to circumvent potential confounding effects of Rab10’s established role in neurite outgrowth. We observed a significant inhibition of DCV exocytosis in Rab10-depleted neurons, whereas synaptic vesicle exocytosis was unaffected. However, rather than a direct involvement in DCV trafficking, this effect was attributed to two ER-dependent processes, ER-regulated intracellular Ca2+ dynamics, and protein synthesis. Gene Ontology analysis of differentially expressed proteins upon Rab10 depletion identified substantial alterations in synaptic and ER/ribosomal proteins, including the Ca2+ pump SERCA2. In addition, ER morphology and dynamics were altered, ER Ca2+ levels were depleted, and Ca2+ homeostasis was impaired in Rab10-depleted neurons. However, Ca2+ entry using a Ca2+ ionophore still triggered less DCV exocytosis. Instead, leucine supplementation, which enhances protein synthesis, largely rescued DCV exocytosis deficiency. We conclude that Rab10 is required for neuropeptide release by maintaining Ca2+ dynamics and regulating protein synthesis. Furthermore, DCV exocytosis appeared more dependent on (acute) protein synthesis than synaptic vesicle exocytosis.

    1. Neuroscience
    Brian C Ruyle, Sarah Masud ... Jose A Morón
    Research Article

    Millions of Americans suffering from Opioid Use Disorders face a high risk of fatal overdose due to opioid-induced respiratory depression (OIRD). Fentanyl, a powerful synthetic opioid, is a major contributor to the rising rates of overdose deaths. Reversing fentanyl overdoses has proved challenging due to its high potency and the rapid onset of OIRD. We assessed the contributions of central and peripheral mu opioid receptors (MORs) in mediating fentanyl-induced physiological responses. The peripherally restricted MOR antagonist naloxone methiodide (NLXM) both prevented and reversed OIRD to a degree comparable to that of naloxone (NLX), indicating substantial involvement of peripheral MORs to OIRD. Interestingly, NLXM-mediated OIRD reversal did not produce aversive behaviors observed after NLX. We show that neurons in the nucleus of the solitary tract (nTS), the first central synapse of peripheral afferents, exhibit a biphasic activity profile following fentanyl exposure. NLXM pretreatment attenuates this activity, suggesting that these responses are mediated by peripheral MORs. Together, these findings establish a critical role for peripheral MORs, including ascending inputs to the nTS, as sites of dysfunction during OIRD. Furthermore, selective peripheral MOR antagonism could be a promising therapeutic strategy for managing OIRD by sparing CNS-driven acute opioid-associated withdrawal and aversion observed after NLX.