Insights into the dynamic control of breathing revealed through cell-type-specific responses to substance P

  1. Nathan A Baertsch  Is a corresponding author
  2. Jan-Marino Ramirez  Is a corresponding author
  1. Seattle Children's Research Institute, United States

Abstract

The rhythm generating network for breathing must continuously adjust to changing metabolic and behavioral demands. Here, we examined network-based mechanisms in the mouse preBӧtzinger complex using substance P, a potent excitatory modulator of breathing frequency and stability, as a tool to dissect network properties that underlie dynamic breathing. We find that substance P does not alter the balance of excitation and inhibition during breaths or the duration of the resulting refractory period. Instead, mechanisms of recurrent excitation between breaths are enhanced such that the rate that excitation percolates through the network is increased. We propose a conceptual framework in which three distinct phases of inspiration, the burst phase, refractory phase, and percolation phase, can be differentially modulated to control breathing dynamics and stability. Unraveling mechanisms that support this dynamic control may improve our understanding of nervous system disorders that destabilize breathing, many of which involve changes in brainstem neuromodulatory systems.

Data availability

All data generated during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

Article and author information

Author details

  1. Nathan A Baertsch

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    For correspondence
    nathan.baertsch@seattlechildrens.org
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1589-5575
  2. Jan-Marino Ramirez

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    For correspondence
    jan.ramirez@seattlechildrens.org
    Competing interests
    Jan-Marino Ramirez, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5626-3999

Funding

National Heart, Lung, and Blood Institute (R01 HL126523)

  • Jan-Marino Ramirez

National Heart, Lung, and Blood Institute (R01 HL144801)

  • Jan-Marino Ramirez

National Heart, Lung, and Blood Institute (K99 HL145004)

  • Nathan A Baertsch

National Heart, Lung, and Blood Institute (F32 HL134207)

  • Nathan A Baertsch

National Heart, Lung, and Blood Institute (P01 HL090554)

  • Jan-Marino Ramirez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments and animal procedures were approved by the Seattle Children's Research Institute's Animal Care and Use Committee and conducted in accordance with the National Institutes of Health guidelines. (approved protocol #15981)

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Publication history

  1. Received: August 26, 2019
  2. Accepted: December 4, 2019
  3. Accepted Manuscript published: December 5, 2019 (version 1)
  4. Version of Record published: January 13, 2020 (version 2)

Copyright

© 2019, Baertsch & Ramirez

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 885
    Page views
  • 136
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nathan A Baertsch
  2. Jan-Marino Ramirez
(2019)
Insights into the dynamic control of breathing revealed through cell-type-specific responses to substance P
eLife 8:e51350.
https://doi.org/10.7554/eLife.51350

Further reading

    1. Developmental Biology
    2. Neuroscience
    Ashtyn T Wiltbank et al.
    Research Article

    Efficient neurotransmission is essential for organism survival and is enhanced by myelination. However, the genes that regulate myelin and myelinating glial cell development have not been fully characterized. Data from our lab and others demonstrates that cd59, which encodes for a small GPI-anchored glycoprotein, is highly expressed in developing zebrafish, rodent, and human oligodendrocytes (OLs) and Schwann cells (SCs), and that patients with CD59 dysfunction develop neurological dysfunction during early childhood. Yet, the function of Cd59 in the developing nervous system is currently undefined. In this study, we demonstrate that cd59 is expressed in a subset of developing SCs. Using cd59 mutant zebrafish, we show that developing SCs proliferate excessively and nerves may have reduced myelin volume, altered myelin ultrastructure, and perturbed node of Ranvier assembly. Finally, we demonstrate that complement activity is elevated in cd59 mutants and that inhibiting inflammation restores SC proliferation, myelin volume, and nodes of Ranvier to wildtype levels. Together, this work identifies Cd59 and developmental inflammation as key players in myelinating glial cell development, highlighting the collaboration between glia and the innate immune system to ensure normal neural development.

    1. Neuroscience
    Arefeh Sherafati et al.
    Research Article Updated

    Cochlear implants are neuroprosthetic devices that can restore hearing in people with severe to profound hearing loss by electrically stimulating the auditory nerve. Because of physical limitations on the precision of this stimulation, the acoustic information delivered by a cochlear implant does not convey the same level of acoustic detail as that conveyed by normal hearing. As a result, speech understanding in listeners with cochlear implants is typically poorer and more effortful than in listeners with normal hearing. The brain networks supporting speech understanding in listeners with cochlear implants are not well understood, partly due to difficulties obtaining functional neuroimaging data in this population. In the current study, we assessed the brain regions supporting spoken word understanding in adult listeners with right unilateral cochlear implants (n=20) and matched controls (n=18) using high-density diffuse optical tomography (HD-DOT), a quiet and non-invasive imaging modality with spatial resolution comparable to that of functional MRI. We found that while listening to spoken words in quiet, listeners with cochlear implants showed greater activity in the left prefrontal cortex than listeners with normal hearing, specifically in a region engaged in a separate spatial working memory task. These results suggest that listeners with cochlear implants require greater cognitive processing during speech understanding than listeners with normal hearing, supported by compensatory recruitment of the left prefrontal cortex.