RNA polymerase mutations cause cephalosporin resistance in clinical Neisseria gonorrhoeae isolates

  1. Samantha G Palace
  2. Yi Wang
  3. Daniel H F Rubin
  4. Michael A Welsh
  5. Tatum D Mortimer
  6. Kevin Cole
  7. David W Eyre
  8. Suzanne Walker
  9. Yonatan H Grad  Is a corresponding author
  1. Harvard TH Chan School of Public Health, United States
  2. Harvard Medical School, United States
  3. Royal Sussex County Hospital, United Kingdom
  4. University of Oxford, United Kingdom

Abstract

Increasing Neisseria gonorrhoeae resistance to ceftriaxone, the last antibiotic recommended for empiric gonorrhea treatment, poses an urgent public health threat. However, the genetic basis of reduced susceptibility to ceftriaxone is not completely understood: while most ceftriaxone resistance in clinical isolates is caused by target site mutations in penA, others lack these mutations. We show that penA-independent ceftriaxone resistance has evolved multiple times through distinct mutations in rpoB and rpoD. We identify five mutations in these genes that each increase resistance to ceftriaxone, including one mutation that arose independently in two lineages, and show that clinical isolates from multiple lineages are a single nucleotide change from ceftriaxone resistance. These RNA polymerase mutations result in large-scale transcriptional changes without altering susceptibility to other antibiotics, reducing growth rate, or deranging cell morphology. These results underscore the unexpected diversity of pathways to resistance and the importance of continued surveillance for novel resistance mutations.

Data availability

Sequencing data have been deposited in the NCBI SRA database under accession number PRJNA540288.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Samantha G Palace

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7849-8078
  2. Yi Wang

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel H F Rubin

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael A Welsh

    Department of Microbiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8268-6285
  5. Tatum D Mortimer

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kevin Cole

    Public Health England, Royal Sussex County Hospital, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. David W Eyre

    Big Data Institute, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Suzanne Walker

    Department of Microbiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Yonatan H Grad

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    For correspondence
    ygrad@hsph.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5646-1314

Funding

Richard and Susan Smith Family Foundation

  • Yonatan H Grad

National Institutes of Health (R01 AI132606)

  • Yonatan H Grad

National Institutes of Health (R01 GM76710)

  • Suzanne Walker

National Institutes of Health (F32 GM123579)

  • Michael A Welsh

National Institutes of Health (T32 GM007753)

  • Daniel H F Rubin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christina L Stallings, Washington University School of Medicine, United States

Version history

  1. Received: August 27, 2019
  2. Accepted: February 1, 2020
  3. Accepted Manuscript published: February 3, 2020 (version 1)
  4. Version of Record published: February 11, 2020 (version 2)

Copyright

© 2020, Palace et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,147
    views
  • 292
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samantha G Palace
  2. Yi Wang
  3. Daniel H F Rubin
  4. Michael A Welsh
  5. Tatum D Mortimer
  6. Kevin Cole
  7. David W Eyre
  8. Suzanne Walker
  9. Yonatan H Grad
(2020)
RNA polymerase mutations cause cephalosporin resistance in clinical Neisseria gonorrhoeae isolates
eLife 9:e51407.
https://doi.org/10.7554/eLife.51407

Share this article

https://doi.org/10.7554/eLife.51407

Further reading

    1. Microbiology and Infectious Disease
    Brian G Vassallo, Noemie Scheidel ... Dennis H Kim
    Research Article

    The microbiota is a key determinant of the physiology and immunity of animal hosts. The factors governing the transmissibility of viruses between susceptible hosts are incompletely understood. Bacteria serve as food for Caenorhabditis elegans and represent an integral part of the natural environment of C. elegans. We determined the effects of bacteria isolated with C. elegans from its natural environment on the transmission of Orsay virus in C. elegans using quantitative virus transmission and host susceptibility assays. We observed that Ochrobactrum species promoted Orsay virus transmission, whereas Pseudomonas lurida MYb11 attenuated virus transmission relative to the standard laboratory bacterial food Escherichia coli OP50. We found that pathogenic Pseudomonas aeruginosa strains PA01 and PA14 further attenuated virus transmission. We determined that the amount of Orsay virus required to infect 50% of a C. elegans population on P. lurida MYb11 compared with Ochrobactrum vermis MYb71 was dramatically increased, over three orders of magnitude. Host susceptibility was attenuated even further in the presence of P. aeruginosa PA14. Genetic analysis of the determinants of P. aeruginosa required for attenuation of C. elegans susceptibility to Orsay virus infection revealed a role for regulators of quorum sensing. Our data suggest that distinct constituents of the C. elegans microbiota and potential pathogens can have widely divergent effects on Orsay virus transmission, such that associated bacteria can effectively determine host susceptibility versus resistance to viral infection. Our study provides quantitative evidence for a critical role for tripartite host-virus-bacteria interactions in determining the transmissibility of viruses among susceptible hosts.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Carlo Giannangelo, Matthew P Challis ... Darren J Creek
    Research Article

    New antimalarial drug candidates that act via novel mechanisms are urgently needed to combat malaria drug resistance. Here, we describe the multi-omic chemical validation of Plasmodium M1 alanyl metalloaminopeptidase as an attractive drug target using the selective inhibitor, MIPS2673. MIPS2673 demonstrated potent inhibition of recombinant Plasmodium falciparum (PfA-M1) and Plasmodium vivax (PvA-M1) M1 metalloaminopeptidases, with selectivity over other Plasmodium and human aminopeptidases, and displayed excellent in vitro antimalarial activity with no significant host cytotoxicity. Orthogonal label-free chemoproteomic methods based on thermal stability and limited proteolysis of whole parasite lysates revealed that MIPS2673 solely targets PfA-M1 in parasites, with limited proteolysis also enabling estimation of the binding site on PfA-M1 to within ~5 Å of that determined by X-ray crystallography. Finally, functional investigation by untargeted metabolomics demonstrated that MIPS2673 inhibits the key role of PfA-M1 in haemoglobin digestion. Combined, our unbiased multi-omic target deconvolution methods confirmed the on-target activity of MIPS2673, and validated selective inhibition of M1 alanyl metalloaminopeptidase as a promising antimalarial strategy.