1. Microbiology and Infectious Disease
Download icon

RNA polymerase mutations cause cephalosporin resistance in clinical Neisseria gonorrhoeae isolates

  1. Samantha G Palace
  2. Yi Wang
  3. Daniel H F Rubin
  4. Michael A Welsh
  5. Tatum D Mortimer
  6. Kevin Cole
  7. David W Eyre
  8. Suzanne Walker
  9. Yonatan H Grad  Is a corresponding author
  1. Harvard TH Chan School of Public Health, United States
  2. Harvard Medical School, United States
  3. Royal Sussex County Hospital, United Kingdom
  4. University of Oxford, United Kingdom
Research Article
  • Cited 5
  • Views 1,261
  • Annotations
Cite this article as: eLife 2020;9:e51407 doi: 10.7554/eLife.51407

Abstract

Increasing Neisseria gonorrhoeae resistance to ceftriaxone, the last antibiotic recommended for empiric gonorrhea treatment, poses an urgent public health threat. However, the genetic basis of reduced susceptibility to ceftriaxone is not completely understood: while most ceftriaxone resistance in clinical isolates is caused by target site mutations in penA, others lack these mutations. We show that penA-independent ceftriaxone resistance has evolved multiple times through distinct mutations in rpoB and rpoD. We identify five mutations in these genes that each increase resistance to ceftriaxone, including one mutation that arose independently in two lineages, and show that clinical isolates from multiple lineages are a single nucleotide change from ceftriaxone resistance. These RNA polymerase mutations result in large-scale transcriptional changes without altering susceptibility to other antibiotics, reducing growth rate, or deranging cell morphology. These results underscore the unexpected diversity of pathways to resistance and the importance of continued surveillance for novel resistance mutations.

Data availability

Sequencing data have been deposited in the NCBI SRA database under accession number PRJNA540288.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Samantha G Palace

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7849-8078
  2. Yi Wang

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel H F Rubin

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael A Welsh

    Department of Microbiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8268-6285
  5. Tatum D Mortimer

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kevin Cole

    Public Health England, Royal Sussex County Hospital, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. David W Eyre

    Big Data Institute, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Suzanne Walker

    Department of Microbiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Yonatan H Grad

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    For correspondence
    ygrad@hsph.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5646-1314

Funding

Richard and Susan Smith Family Foundation

  • Yonatan H Grad

National Institutes of Health (R01 AI132606)

  • Yonatan H Grad

National Institutes of Health (R01 GM76710)

  • Suzanne Walker

National Institutes of Health (F32 GM123579)

  • Michael A Welsh

National Institutes of Health (T32 GM007753)

  • Daniel H F Rubin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christina L Stallings, Washington University School of Medicine, United States

Publication history

  1. Received: August 27, 2019
  2. Accepted: February 1, 2020
  3. Accepted Manuscript published: February 3, 2020 (version 1)
  4. Version of Record published: February 11, 2020 (version 2)

Copyright

© 2020, Palace et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,261
    Page views
  • 189
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Marco Jost et al.
    Tools and Resources Updated

    Dendritic cells (DCs) regulate processes ranging from antitumor and antiviral immunity to host-microbe communication at mucosal surfaces. It remains difficult, however, to genetically manipulate human DCs, limiting our ability to probe how DCs elicit specific immune responses. Here, we develop a CRISPR-Cas9 genome editing method for human monocyte-derived DCs (moDCs) that mediates knockouts with a median efficiency of >94% across >300 genes. Using this method, we perform genetic screens in moDCs, identifying mechanisms by which DCs tune responses to lipopolysaccharides from the human microbiome. In addition, we reveal donor-specific responses to lipopolysaccharides, underscoring the importance of assessing immune phenotypes in donor-derived cells, and identify candidate genes that control this specificity, highlighting the potential of our method to pinpoint determinants of inter-individual variation in immunity. Our work sets the stage for a systematic dissection of the immune signaling at the host-microbiome interface and for targeted engineering of DCs for neoantigen vaccination.

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    J Stephan Wichers et al.
    Research Article Updated

    Sequestration of Plasmodium falciparum(P. falciparum)-infected erythrocytes to host endothelium through the parasite-derived P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion proteins is central to the development of malaria pathogenesis. PfEMP1 proteins have diversified and expanded to encompass many sequence variants, conferring each parasite a similar array of human endothelial receptor-binding phenotypes. Here, we analyzed RNA-seq profiles of parasites isolated from 32 P. falciparum-infected adult travellers returning to Germany. Patients were categorized into either malaria naive (n = 15) or pre-exposed (n = 17), and into severe (n = 8) or non-severe (n = 24) cases. For differential expression analysis, PfEMP1-encoding var gene transcripts were de novo assembled from RNA-seq data and, in parallel, var-expressed sequence tags were analyzed and used to predict the encoded domain composition of the transcripts. Both approaches showed in concordance that severe malaria was associated with PfEMP1 containing the endothelial protein C receptor (EPCR)-binding CIDRα1 domain, whereas CD36-binding PfEMP1 was linked to non-severe malaria outcomes. First-time infected adults were more likely to develop severe symptoms and tended to be infected for a longer period. Thus, parasites with more pathogenic PfEMP1 variants are more common in patients with a naive immune status, and/or adverse inflammatory host responses to first infections favor the growth of EPCR-binding parasites.