RNA polymerase mutations cause cephalosporin resistance in clinical Neisseria gonorrhoeae isolates

  1. Samantha G Palace
  2. Yi Wang
  3. Daniel H F Rubin
  4. Michael A Welsh
  5. Tatum D Mortimer
  6. Kevin Cole
  7. David W Eyre
  8. Suzanne Walker
  9. Yonatan H Grad  Is a corresponding author
  1. Harvard TH Chan School of Public Health, United States
  2. Harvard Medical School, United States
  3. Royal Sussex County Hospital, United Kingdom
  4. University of Oxford, United Kingdom

Abstract

Increasing Neisseria gonorrhoeae resistance to ceftriaxone, the last antibiotic recommended for empiric gonorrhea treatment, poses an urgent public health threat. However, the genetic basis of reduced susceptibility to ceftriaxone is not completely understood: while most ceftriaxone resistance in clinical isolates is caused by target site mutations in penA, others lack these mutations. We show that penA-independent ceftriaxone resistance has evolved multiple times through distinct mutations in rpoB and rpoD. We identify five mutations in these genes that each increase resistance to ceftriaxone, including one mutation that arose independently in two lineages, and show that clinical isolates from multiple lineages are a single nucleotide change from ceftriaxone resistance. These RNA polymerase mutations result in large-scale transcriptional changes without altering susceptibility to other antibiotics, reducing growth rate, or deranging cell morphology. These results underscore the unexpected diversity of pathways to resistance and the importance of continued surveillance for novel resistance mutations.

Data availability

Sequencing data have been deposited in the NCBI SRA database under accession number PRJNA540288.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Samantha G Palace

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7849-8078
  2. Yi Wang

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel H F Rubin

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael A Welsh

    Department of Microbiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8268-6285
  5. Tatum D Mortimer

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kevin Cole

    Public Health England, Royal Sussex County Hospital, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. David W Eyre

    Big Data Institute, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Suzanne Walker

    Department of Microbiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Yonatan H Grad

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    For correspondence
    ygrad@hsph.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5646-1314

Funding

Richard and Susan Smith Family Foundation

  • Yonatan H Grad

National Institutes of Health (R01 AI132606)

  • Yonatan H Grad

National Institutes of Health (R01 GM76710)

  • Suzanne Walker

National Institutes of Health (F32 GM123579)

  • Michael A Welsh

National Institutes of Health (T32 GM007753)

  • Daniel H F Rubin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Palace et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,236
    views
  • 298
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samantha G Palace
  2. Yi Wang
  3. Daniel H F Rubin
  4. Michael A Welsh
  5. Tatum D Mortimer
  6. Kevin Cole
  7. David W Eyre
  8. Suzanne Walker
  9. Yonatan H Grad
(2020)
RNA polymerase mutations cause cephalosporin resistance in clinical Neisseria gonorrhoeae isolates
eLife 9:e51407.
https://doi.org/10.7554/eLife.51407

Share this article

https://doi.org/10.7554/eLife.51407

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Stephanie M Stuteley, Ghader Bashiri
    Insight

    In the bacterium M. smegmatis, an enzyme called MftG allows the cofactor mycofactocin to transfer electrons released during ethanol metabolism to the electron transport chain.

    1. Microbiology and Infectious Disease
    Chenghao Jia, Chenghu Huang ... Min Yue
    Research Article

    Bacterial regional demonstration after global dissemination is an essential pathway for selecting distinct finesses. However, the evolution of the resistome during the transition to endemicity remains unaddressed. Using the most comprehensive whole-genome sequencing dataset of Salmonella enterica serovar Gallinarum (S. Gallinarum) collected from 15 countries, including 45 newly recovered samples from two related local regions, we established the relationship among avian-specific pathogen genetic profiles and localization patterns. Initially, we revealed the international transmission and evolutionary history of S. Gallinarum to recent endemicity through phylogenetic analysis conducted using a spatiotemporal Bayesian framework. Our findings indicate that the independent acquisition of the resistome via the mobilome, primarily through plasmids and transposons, shapes a unique antimicrobial resistance profile among different lineages. Notably, the mobilome-resistome combination among distinct lineages exhibits a geographical-specific manner, further supporting a localized endemic mobilome-driven process. Collectively, this study elucidates resistome adaptation in the endemic transition of an avian-specific pathogen, likely driven by the localized farming style, and provides valuable insights for targeted interventions.