Bacterial interspecies interactions modulate pH-mediated antibiotic tolerance
Abstract
Predicting antibiotic efficacy within microbial communities remains highly challenging. Interspecies interactions can impact antibiotic activity through many mechanisms, including alterations to bacterial physiology. Here, we studied synthetic communities constructed from the core members of the fruit fly gut microbiota. Co-culturing of Lactobacillus plantarum with Acetobacter species altered its tolerance to the transcriptional inhibitor rifampin. By measuring key metabolites and environmental pH, we determined that Acetobacter species counter the acidification driven by L. plantarum production of lactate. Shifts in pH were sufficient to modulate L. plantarum tolerance to rifampin and the translational inhibitor erythromycin. A reduction in lag time exiting stationary phase was linked to L. plantarum tolerance to rifampicin, opposite to a previously identified mode of tolerance to ampicillin in E. coli. This mechanistic understanding of the coupling among interspecies interactions, environmental pH, and antibiotic tolerance enables future predictions of growth and the effects of antibiotics in more complex communities.
Data availability
All data generated or analyzed during this study are included in the manuscript and supporting files, excepting sequencing data that have been deposited in the sequence read archive of NCBI under accession number PRJNA530819 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA530819/).
Article and author information
Author details
Funding
National Institutes of Health (DP2OD006466)
- Kerwyn Casey Huang
National Science Foundation (MCB-1149328)
- Kerwyn Casey Huang
Allen Center for Systems Modeling of Infection (N/A)
- Kerwyn Casey Huang
National Institutes of Health (DP5OD017851)
- William B Ludington
Howard Hughes Medical Institute (International Student Research Fellowship)
- Andrés Aranda-Diaz
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2020, Aranda-Diaz et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,785
- views
-
- 857
- downloads
-
- 67
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.