Bacterial interspecies interactions modulate pH-mediated antibiotic tolerance

  1. Andrés Aranda-Diaz
  2. Benjamin Obadia
  3. Ren Dodge
  4. Tani Thomsen
  5. Zachary F Hallberg
  6. Zehra Tüzün Güvener
  7. William B Ludington  Is a corresponding author
  8. Kerwyn Casey Huang  Is a corresponding author
  1. Stanford University, United States
  2. University of California, Berkeley, United States
  3. Carnegie Institute, United States

Abstract

Predicting antibiotic efficacy within microbial communities remains highly challenging. Interspecies interactions can impact antibiotic activity through many mechanisms, including alterations to bacterial physiology. Here, we studied synthetic communities constructed from the core members of the fruit fly gut microbiota. Co-culturing of Lactobacillus plantarum with Acetobacter species altered its tolerance to the transcriptional inhibitor rifampin. By measuring key metabolites and environmental pH, we determined that Acetobacter species counter the acidification driven by L. plantarum production of lactate. Shifts in pH were sufficient to modulate L. plantarum tolerance to rifampin and the translational inhibitor erythromycin. A reduction in lag time exiting stationary phase was linked to L. plantarum tolerance to rifampicin, opposite to a previously identified mode of tolerance to ampicillin in E. coli. This mechanistic understanding of the coupling among interspecies interactions, environmental pH, and antibiotic tolerance enables future predictions of growth and the effects of antibiotics in more complex communities.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files, excepting sequencing data that have been deposited in the sequence read archive of NCBI under accession number PRJNA530819 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA530819/).

The following data sets were generated

Article and author information

Author details

  1. Andrés Aranda-Diaz

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0566-4901
  2. Benjamin Obadia

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3286-3236
  3. Ren Dodge

    Department of Embryology, Carnegie Institute, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tani Thomsen

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zachary F Hallberg

    Department of Chemistry, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Zehra Tüzün Güvener

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. William B Ludington

    Department of Embryology, Carnegie Institute, Baltimore, United States
    For correspondence
    ludington@carnegiescience.edu
    Competing interests
    The authors declare that no competing interests exist.
  8. Kerwyn Casey Huang

    Department of Bioengineering, Stanford University, Stanford, United States
    For correspondence
    kchuang@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8043-8138

Funding

National Institutes of Health (DP2OD006466)

  • Kerwyn Casey Huang

National Science Foundation (MCB-1149328)

  • Kerwyn Casey Huang

Allen Center for Systems Modeling of Infection (N/A)

  • Kerwyn Casey Huang

National Institutes of Health (DP5OD017851)

  • William B Ludington

Howard Hughes Medical Institute (International Student Research Fellowship)

  • Andrés Aranda-Diaz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wenying Shou, Fred Hutchinson Cancer Research Center, United States

Version history

  1. Received: August 30, 2019
  2. Accepted: January 28, 2020
  3. Accepted Manuscript published: January 29, 2020 (version 1)
  4. Version of Record published: February 17, 2020 (version 2)

Copyright

© 2020, Aranda-Diaz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,328
    views
  • 809
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrés Aranda-Diaz
  2. Benjamin Obadia
  3. Ren Dodge
  4. Tani Thomsen
  5. Zachary F Hallberg
  6. Zehra Tüzün Güvener
  7. William B Ludington
  8. Kerwyn Casey Huang
(2020)
Bacterial interspecies interactions modulate pH-mediated antibiotic tolerance
eLife 9:e51493.
https://doi.org/10.7554/eLife.51493

Share this article

https://doi.org/10.7554/eLife.51493

Further reading

    1. Ecology
    Jiayun Li, Paul Holford ... Xiaoge Nian
    Research Article

    Diaphorina citri serves as the primary vector for ‘Candidatus Liberibacter asiaticus (CLas),’ the bacterium associated with the severe Asian form of huanglongbing. CLas-positive D. citri are more fecund than their CLas-negative counterparts and require extra energy expenditure. Therefore, understanding the molecular mechanisms linking metabolism and reproduction is of particular importance. In this study, we found adipokinetic hormone (DcAKH) and its receptor (DcAKHR) were essential for increasing lipid metabolism and fecundity in response to CLas infection in D. citri. Knockdown of DcAKH and DcAKHR not only resulted in the accumulation of triacylglycerol and a decline of glycogen, but also significantly decreased fecundity and CLas titer in ovaries. Combined in vivo and in vitro experiments showed that miR-34 suppresses DcAKHR expression by binding to its 3’ untranslated region, whilst overexpression of miR-34 resulted in a decline of DcAKHR expression and CLas titer in ovaries and caused defects that mimicked DcAKHR knockdown phenotypes. Additionally, knockdown of DcAKH and DcAKHR significantly reduced juvenile hormone (JH) titer and JH signaling pathway genes in fat bodies and ovaries, including the JH receptor, methoprene-tolerant (DcMet), and the transcription factor, Krüppel homolog 1 (DcKr-h1), that acts downstream of it, as well as the egg development related genes vitellogenin 1-like (DcVg-1-like), vitellogenin A1-like (DcVg-A1-like) and the vitellogenin receptor (DcVgR). As a result, CLas hijacks AKH/AKHR-miR-34-JH signaling to improve D. citri lipid metabolism and fecundity, while simultaneously increasing the replication of CLas, suggesting a mutualistic interaction between CLas and D. citri ovaries.

    1. Ecology
    Xueyou Li, William V Bleisch ... Xue-Long Jiang
    Research Article

    Spatial and temporal associations between sympatric species underpin biotic interactions, structure ecological assemblages, and sustain ecosystem functioning and stability. However, the resilience of interspecific spatiotemporal associations to human activity remains poorly understood, particularly in mountain forests where anthropogenic impacts are often pervasive. Here, we applied context-dependent Joint Species Distribution Models to a systematic camera-trap survey dataset from a global biodiversity hotspot in eastern Himalayas to understand how prominent human activities in mountain forests influence species associations within terrestrial mammal communities. We obtained 10,388 independent detections of 17 focal species (12 carnivores and five ungulates) from 322 stations over 43,163 camera days of effort. We identified a higher incidence of positive associations in habitats with higher levels of human modification (87%) and human presence (83%) compared to those located in habitats with lower human modification (64%) and human presence (65%) levels. We also detected a significant reduction of pairwise encounter time at increasing levels of human disturbance, corresponding to more frequent encounters between pairs of species. Our findings indicate that human activities can push mammals together into more frequent encounters and associations, which likely influences the coexistence and persistence of wildlife, with potential far-ranging ecological consequences.