Relationship between simultaneously recorded spiking activity and fluorescence signal in GCaMP6 transgenic mice

Abstract

Fluorescent calcium indicators are often used to investigate neural dynamics, but the relationship between fluorescence and action potentials (APs) remains unclear. Most APs can be detected when the soma almost fills the microscope's field of view, but calcium indicators are often used to image populations of neurons, necessitating a large field of view, generating fewer photons per neuron, and compromising AP detection. Here we characterized the AP-fluorescence transfer function in vivo for 48 layer 2/3 pyramidal neurons in primary visual cortex, with simultaneous calcium imaging and cell-attached recordings from transgenic mice expressing GCaMP6s or GCaMP6f. While most APs were detected under optimal conditions, under conditions typical of population imaging studies only a minority of 1AP and 2AP events were detected (often <10% and ~20-30%, respectively), emphasizing the limits of AP detection under more realistic imaging conditions.

Data availability

All data generated and analyzed in this study are available at https://portal.brain-map.org/explore/circuits/oephys

The following data sets were generated

Article and author information

Author details

  1. Lawrence Huang

    Electrophysiology, Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Peter Ledochowitsch

    MindScope Program, Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ulf Knoblich

    Structured Science, Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jérôme Lecoq

    MindScope Program, Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Gabe J Murphy

    Structured Science, Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Clay Reid

    Structured Science, Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8697-6797
  7. Saskia E J de Vries

    MindScope Program, Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3704-3499
  8. Christof Koch

    MindScope Program, Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hongkui Zeng

    Structured Science, Allen Institute for Brain Science, Seattle, United States
    For correspondence
    hongkuiz@alleninstitute.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0326-5878
  10. Michael A Buice

    MindScope Program, Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jack Waters

    Structured Science, Allen Institute for Brain Science, Seattle, United States
    For correspondence
    jackw@alleninstitute.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2312-4183
  12. Lu Li

    Structured Science, Allen Institute for Brain Science, Seattle, United States
    For correspondence
    lilu67@mail.sysu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.

Funding

Allen Institute for Brain Science (program funds)

  • Lawrence Huang
  • Peter Ledochowitsch
  • Ulf Knoblich
  • Jérôme Lecoq
  • Gabe J Murphy
  • Clay Reid
  • Saskia E J de Vries
  • Christof Koch
  • Hongkui Zeng
  • Michael A Buice
  • Jack Waters
  • Lu Li

National Natural Science Foundation of China (NSFC31871055)

  • Lu Li

Guangdong Science and Technology Department (2017B030314026)

  • Lu Li

This work is funded by the Allen Institute for Brain Science. The funder had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experimental procedures were conducted in accordance with NIH guidelines and approved by the Institutional Animal Care and Use Committee (IACUC) of the Allen Institute for Brain Science under protocol number 1509.

Copyright

© 2021, Huang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 14,616
    views
  • 2,072
    downloads
  • 137
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lawrence Huang
  2. Peter Ledochowitsch
  3. Ulf Knoblich
  4. Jérôme Lecoq
  5. Gabe J Murphy
  6. Clay Reid
  7. Saskia E J de Vries
  8. Christof Koch
  9. Hongkui Zeng
  10. Michael A Buice
  11. Jack Waters
  12. Lu Li
(2021)
Relationship between simultaneously recorded spiking activity and fluorescence signal in GCaMP6 transgenic mice
eLife 10:e51675.
https://doi.org/10.7554/eLife.51675

Share this article

https://doi.org/10.7554/eLife.51675

Further reading

    1. Neuroscience
    Andrea Sattin, Chiara Nardin ... Tommaso Fellin
    Research Advance

    Two-photon (2P) fluorescence imaging through gradient index (GRIN) lens-based endoscopes is fundamental to investigate the functional properties of neural populations in deep brain circuits. However, GRIN lenses have intrinsic optical aberrations, which severely degrade their imaging performance. GRIN aberrations decrease the signal-to-noise ratio (SNR) and spatial resolution of fluorescence signals, especially in lateral portions of the field-of-view (FOV), leading to restricted FOV and smaller number of recorded neurons. This is especially relevant for GRIN lenses of several millimeters in length, which are needed to reach the deeper regions of the rodent brain. We have previously demonstrated a novel method to enlarge the FOV and improve the spatial resolution of 2P microendoscopes based on GRIN lenses of length <4.1 mm (Antonini et al., 2020). However, previously developed microendoscopes were too short to reach the most ventral regions of the mouse brain. In this study, we combined optical simulations with fabrication of aspherical polymer microlenses through three-dimensional (3D) microprinting to correct for optical aberrations in long (length >6 mm) GRIN lens-based microendoscopes (diameter, 500 µm). Long corrected microendoscopes had improved spatial resolution, enabling imaging in significantly enlarged FOVs. Moreover, using synthetic calcium data we showed that aberration correction enabled detection of cells with higher SNR of fluorescent signals and decreased cross-contamination between neurons. Finally, we applied long corrected microendoscopes to perform large-scale and high-precision recordings of calcium signals in populations of neurons in the olfactory cortex, a brain region laying approximately 5 mm from the brain surface, of awake head-fixed mice. Long corrected microendoscopes are powerful new tools enabling population imaging with unprecedented large FOV and high spatial resolution in the most ventral regions of the mouse brain.

    1. Neuroscience
    Yiheng Zhang, Yun Chen ... He Cui
    Research Article

    Although recent studies suggest that activity in the motor cortex, in addition to generating motor outputs, receives substantial information regarding sensory inputs, it is still unclear how sensory context adjusts the motor commands. Here, we recorded population neural activity in the motor cortex via microelectrode arrays while monkeys performed flexible manual interceptions of moving targets. During this task, which requires predictive sensorimotor control, the activity of most neurons in the motor cortex encoding upcoming movements was influenced by ongoing target motion. Single-trial neural states at the movement onset formed staggered orbital geometries, suggesting that target motion modulates peri-movement activity in an orthogonal manner. This neural geometry was further evaluated with a representational model and recurrent neural networks (RNNs) with task-specific input-output mapping. We propose that the sensorimotor dynamics can be derived from neuronal mixed sensorimotor selectivity and dynamic interaction between modulations.