Relationship between simultaneously recorded spiking activity and fluorescence signal in GCaMP6 transgenic mice

Abstract

Fluorescent calcium indicators are often used to investigate neural dynamics, but the relationship between fluorescence and action potentials (APs) remains unclear. Most APs can be detected when the soma almost fills the microscope's field of view, but calcium indicators are often used to image populations of neurons, necessitating a large field of view, generating fewer photons per neuron, and compromising AP detection. Here we characterized the AP-fluorescence transfer function in vivo for 48 layer 2/3 pyramidal neurons in primary visual cortex, with simultaneous calcium imaging and cell-attached recordings from transgenic mice expressing GCaMP6s or GCaMP6f. While most APs were detected under optimal conditions, under conditions typical of population imaging studies only a minority of 1AP and 2AP events were detected (often <10% and ~20-30%, respectively), emphasizing the limits of AP detection under more realistic imaging conditions.

Data availability

All data generated and analyzed in this study are available at https://portal.brain-map.org/explore/circuits/oephys

The following data sets were generated

Article and author information

Author details

  1. Lawrence Huang

    Electrophysiology, Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Peter Ledochowitsch

    MindScope Program, Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ulf Knoblich

    Structured Science, Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jérôme Lecoq

    MindScope Program, Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Gabe J Murphy

    Structured Science, Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Clay Reid

    Structured Science, Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8697-6797
  7. Saskia E J de Vries

    MindScope Program, Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3704-3499
  8. Christof Koch

    MindScope Program, Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hongkui Zeng

    Structured Science, Allen Institute for Brain Science, Seattle, United States
    For correspondence
    hongkuiz@alleninstitute.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0326-5878
  10. Michael A Buice

    MindScope Program, Allen Institute for Brain Science, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jack Waters

    Structured Science, Allen Institute for Brain Science, Seattle, United States
    For correspondence
    jackw@alleninstitute.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2312-4183
  12. Lu Li

    Structured Science, Allen Institute for Brain Science, Seattle, United States
    For correspondence
    lilu67@mail.sysu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.

Funding

Allen Institute for Brain Science (program funds)

  • Lawrence Huang
  • Peter Ledochowitsch
  • Ulf Knoblich
  • Jérôme Lecoq
  • Gabe J Murphy
  • Clay Reid
  • Saskia E J de Vries
  • Christof Koch
  • Hongkui Zeng
  • Michael A Buice
  • Jack Waters
  • Lu Li

National Natural Science Foundation of China (NSFC31871055)

  • Lu Li

Guangdong Science and Technology Department (2017B030314026)

  • Lu Li

This work is funded by the Allen Institute for Brain Science. The funder had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experimental procedures were conducted in accordance with NIH guidelines and approved by the Institutional Animal Care and Use Committee (IACUC) of the Allen Institute for Brain Science under protocol number 1509.

Copyright

© 2021, Huang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 14,331
    views
  • 2,050
    downloads
  • 127
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lawrence Huang
  2. Peter Ledochowitsch
  3. Ulf Knoblich
  4. Jérôme Lecoq
  5. Gabe J Murphy
  6. Clay Reid
  7. Saskia E J de Vries
  8. Christof Koch
  9. Hongkui Zeng
  10. Michael A Buice
  11. Jack Waters
  12. Lu Li
(2021)
Relationship between simultaneously recorded spiking activity and fluorescence signal in GCaMP6 transgenic mice
eLife 10:e51675.
https://doi.org/10.7554/eLife.51675

Share this article

https://doi.org/10.7554/eLife.51675

Further reading

    1. Neuroscience
    Claire Meissner-Bernard, Friedemann Zenke, Rainer W Friedrich
    Research Article

    Biological memory networks are thought to store information by experience-dependent changes in the synaptic connectivity between assemblies of neurons. Recent models suggest that these assemblies contain both excitatory and inhibitory neurons (E/I assemblies), resulting in co-tuning and precise balance of excitation and inhibition. To understand computational consequences of E/I assemblies under biologically realistic constraints we built a spiking network model based on experimental data from telencephalic area Dp of adult zebrafish, a precisely balanced recurrent network homologous to piriform cortex. We found that E/I assemblies stabilized firing rate distributions compared to networks with excitatory assemblies and global inhibition. Unlike classical memory models, networks with E/I assemblies did not show discrete attractor dynamics. Rather, responses to learned inputs were locally constrained onto manifolds that ‘focused’ activity into neuronal subspaces. The covariance structure of these manifolds supported pattern classification when information was retrieved from selected neuronal subsets. Networks with E/I assemblies therefore transformed the geometry of neuronal coding space, resulting in continuous representations that reflected both relatedness of inputs and an individual’s experience. Such continuous representations enable fast pattern classification, can support continual learning, and may provide a basis for higher-order learning and cognitive computations.

    1. Neuroscience
    Raven Star Wallace, Bronte Mckeown ... Jonathan Smallwood
    Research Article

    Movie-watching is a central aspect of our lives and an important paradigm for understanding the brain mechanisms behind cognition as it occurs in daily life. Contemporary views of ongoing thought argue that the ability to make sense of events in the ‘here and now’ depend on the neural processing of incoming sensory information by auditory and visual cortex, which are kept in check by systems in association cortex. However, we currently lack an understanding of how patterns of ongoing thoughts map onto the different brain systems when we watch a film, partly because methods of sampling experience disrupt the dynamics of brain activity and the experience of movie-watching. Our study established a novel method for mapping thought patterns onto the brain activity that occurs at different moments of a film, which does not disrupt the time course of brain activity or the movie-watching experience. We found moments when experience sampling highlighted engagement with multi-sensory features of the film or highlighted thoughts with episodic features, regions of sensory cortex were more active and subsequent memory for events in the movie was better—on the other hand, periods of intrusive distraction emerged when activity in regions of association cortex within the frontoparietal system was reduced. These results highlight the critical role sensory systems play in the multi-modal experience of movie-watching and provide evidence for the role of association cortex in reducing distraction when we watch films.