KIT ligand protects against both light-induced and genetic photoreceptor degeneration

Abstract

Photoreceptor degeneration is a major cause of blindness and a considerable health burden during aging but effective therapeutic or preventive strategies have not so far become readily available. Here we show in mouse models that signaling through the tyrosine kinase receptor KIT protects photoreceptor cells against both light-induced and inherited retinal degeneration. Upon light damage, photoreceptor cells upregulate Kit ligand (KITL) and activate KIT signaling, which in turn induces nuclear accumulation of the transcription factor NRF2 and stimulates the expression of the antioxidant gene Hmox1. Conversely, a viable Kit mutation promotes light-induced photoreceptor damage, which is reversed by experimental expression of Hmox1. Furthermore, overexpression of KITL from a viral AAV8 vector prevents photoreceptor cell death and partially restores retinal function after light damage or in genetic models of human retinitis pigmentosa. Hence, application of KITL may provide a novel therapeutic avenue for prevention or treatment of retinal degenerative diseases.

Data availability

Sequencing data have been deposited in GEO under accession codes 146176.All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figure 1-supplment figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 5-fig supplement 1, Figure 8, Figure 9, Figure 9-supplment figure 1.

The following data sets were generated

Article and author information

Author details

  1. Huirong Li

    Wenzhou Medical University, Wenzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Lili Lian

    Wenzhou Medical University, Wenzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Bo Liu

    Wenzhou Medical University, Wenzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yu Chen

    Wenzhou Medical University, Wenzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jinglei Yang

    Wenzhou Medical University, Wenzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Shuhui Jian

    Wenzhou Medical University, Wenzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Jiajia Zhou

    Wenzhou Medical University, Wenzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Ying Xu

    GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Xiaoyin Ma

    Wenzhou Medical University, Wenzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Jia Qu

    Wenzhou Medical University, Wenzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Ling Hou

    Wenzhou Medical University, Wenzhou, China
    For correspondence
    lhou@eye.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0705-8099

Funding

National Natural Science Foundation of China (81800838)

  • Huirong Li

National Natural Science Foundation of China (81770946)

  • Ling Hou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were carried out in accordance with the approved guidelines of the Wenzhou Medical University Institutional Animal Care and Use Committee (Permit Number: WZMCOPT-090316).

Reviewing Editor

  1. Claude Desplan, New York University, United States

Version history

  1. Received: September 6, 2019
  2. Accepted: April 2, 2020
  3. Accepted Manuscript published: April 3, 2020 (version 1)
  4. Version of Record published: April 20, 2020 (version 2)
  5. Version of Record updated: April 27, 2021 (version 3)

Copyright

© 2020, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,343
    Page views
  • 216
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Huirong Li
  2. Lili Lian
  3. Bo Liu
  4. Yu Chen
  5. Jinglei Yang
  6. Shuhui Jian
  7. Jiajia Zhou
  8. Ying Xu
  9. Xiaoyin Ma
  10. Jia Qu
  11. Ling Hou
(2020)
KIT ligand protects against both light-induced and genetic photoreceptor degeneration
eLife 9:e51698.
https://doi.org/10.7554/eLife.51698

Share this article

https://doi.org/10.7554/eLife.51698

Further reading

    1. Neuroscience
    Peibo Xu, Jian Peng ... Yuejun Chen
    Research Article

    Deciphering patterns of connectivity between neurons in the brain is a critical step toward understanding brain function. Imaging-based neuroanatomical tracing identifies area-to-area or sparse neuron-to-neuron connectivity patterns, but with limited throughput. Barcode-based connectomics maps large numbers of single-neuron projections, but remains a challenge for jointly analyzing single-cell transcriptomics. Here, we established a rAAV2-retro barcode-based multiplexed tracing method that simultaneously characterizes the projectome and transcriptome at the single neuron level. We uncovered dedicated and collateral projection patterns of ventromedial prefrontal cortex (vmPFC) neurons to five downstream targets and found that projection-defined vmPFC neurons are molecularly heterogeneous. We identified transcriptional signatures of projection-specific vmPFC neurons, and verified Pou3f1 as a marker gene enriched in neurons projecting to the lateral hypothalamus, denoting a distinct subset with collateral projections to both dorsomedial striatum and lateral hypothalamus. In summary, we have developed a new multiplexed technique whose paired connectome and gene expression data can help reveal organizational principles that form neural circuits and process information.

    1. Neuroscience
    Maureen van der Grinten, Jaap de Ruyter van Steveninck ... Yağmur Güçlütürk
    Tools and Resources

    Blindness affects millions of people around the world. A promising solution to restoring a form of vision for some individuals are cortical visual prostheses, which bypass part of the impaired visual pathway by converting camera input to electrical stimulation of the visual system. The artificially induced visual percept (a pattern of localized light flashes, or ‘phosphenes’) has limited resolution, and a great portion of the field’s research is devoted to optimizing the efficacy, efficiency, and practical usefulness of the encoding of visual information. A commonly exploited method is non-invasive functional evaluation in sighted subjects or with computational models by using simulated prosthetic vision (SPV) pipelines. An important challenge in this approach is to balance enhanced perceptual realism, biologically plausibility, and real-time performance in the simulation of cortical prosthetic vision. We present a biologically plausible, PyTorch-based phosphene simulator that can run in real-time and uses differentiable operations to allow for gradient-based computational optimization of phosphene encoding models. The simulator integrates a wide range of clinical results with neurophysiological evidence in humans and non-human primates. The pipeline includes a model of the retinotopic organization and cortical magnification of the visual cortex. Moreover, the quantitative effects of stimulation parameters and temporal dynamics on phosphene characteristics are incorporated. Our results demonstrate the simulator’s suitability for both computational applications such as end-to-end deep learning-based prosthetic vision optimization as well as behavioral experiments. The modular and open-source software provides a flexible simulation framework for computational, clinical, and behavioral neuroscientists working on visual neuroprosthetics.