Coordination of humoral immune factors dictates compatibility between Schistosoma mansoni and Biomphalaria glabrata

  1. Hongyu Li
  2. Jacob R Hambrook
  3. Emmanuel A Pila
  4. Abdullah A Gharamah
  5. Jing Fang
  6. Xinzhong Wu
  7. Patrick Hanington  Is a corresponding author
  1. Beibu Gulf University, China
  2. University of Alberta, Canada

Abstract

Immune factors in snails of the genus Biomphalaria are critical for combating Schistosoma mansoni, the predominant cause of human intestinal schistosomiasis. Independently, many of these factors play an important role in, but do not fully define, the compatibility between the model snail B. glabrata, and S. mansoni. Here, we demonstrate association between four previously characterized humoral immune molecules; BgFREP3, BgTEP1, BgFREP2 and Biomphalysin. We also identify unique immune determinants in the plasma of S. mansoni-resistant B. glabrata that associate with the incompatible phenotype. These factors coordinate to initiate haemocyte-mediated destruction of S. mansoni sporocysts via production of reactive oxygen species. The inclusion of BgFREP2 in a BgFREP3-initiated complex that also includes BgTEP1 almost completely explains resistance to S. mansoni in this model. Our study unifies many independent lines of investigation to provide a more comprehensive understanding of the snail immune system in the context of infection by this important human parasite.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Hongyu Li

    Ocean College, Beibu Gulf University, Qinzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Jacob R Hambrook

    School of Public Health, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Emmanuel A Pila

    School of Public Health, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Abdullah A Gharamah

    School of Public Health, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Jing Fang

    Ocean College, Beibu Gulf University, Qinzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xinzhong Wu

    Ocean College, Beibu Gulf University, Qinzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Patrick Hanington

    School of Public Health, University of Alberta, Edmonton, Canada
    For correspondence
    pch1@ualberta.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3964-5012

Funding

Natural Sciences and Engineering Research Council of Canada (2018-05209)

  • Patrick Hanington

Natural Sciences and Engineering Research Council of Canada (2018- 522661)

  • Patrick Hanington

National Natural Science Foundation of China (31272682)

  • Xinzhong Wu

Guangxi 16 Natural Science Foundation (2016JJD130059)

  • Xinzhong Wu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal work observed ethical requirements and was approved by the Canadian Council of Animal Care and Use Committee (Biosciences) for the University of Alberta (AUP00000057).

Copyright

© 2020, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,326
    views
  • 230
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hongyu Li
  2. Jacob R Hambrook
  3. Emmanuel A Pila
  4. Abdullah A Gharamah
  5. Jing Fang
  6. Xinzhong Wu
  7. Patrick Hanington
(2020)
Coordination of humoral immune factors dictates compatibility between Schistosoma mansoni and Biomphalaria glabrata
eLife 9:e51708.
https://doi.org/10.7554/eLife.51708

Share this article

https://doi.org/10.7554/eLife.51708

Further reading

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Clément Mazeaud, Stefan Pfister ... Laurent Chatel-Chaix
    Research Article

    Zika virus (ZIKV) infection causes significant human disease that, with no approved treatment or vaccine, constitutes a major public health concern. Its life cycle entirely relies on the cytoplasmic fate of the viral RNA genome (vRNA) through a fine-tuned equilibrium between vRNA translation, replication, and packaging into new virions, all within virus-induced replication organelles (vROs). In this study, with an RNA interference (RNAi) mini-screening and subsequent functional characterization, we have identified insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) as a new host dependency factor that regulates vRNA synthesis. In infected cells, IGF2BP2 associates with viral NS5 polymerase and redistributes to the perinuclear viral replication compartment. Combined fluorescence in situ hybridization-based confocal imaging, in vitro binding assays, and immunoprecipitation coupled to RT-qPCR showed that IGF2BP2 directly interacts with ZIKV vRNA 3’ nontranslated region. Using ZIKV sub-genomic replicons and a replication-independent vRO induction system, we demonstrated that IGF2BP2 knockdown impairs de novo vRO biogenesis and, consistently, vRNA synthesis. Finally, the analysis of immunopurified IGF2BP2 complex using quantitative mass spectrometry and RT-qPCR revealed that ZIKV infection alters the protein and RNA interactomes of IGF2BP2. Altogether, our data support that ZIKV hijacks and remodels the IGF2BP2 ribonucleoprotein complex to regulate vRO biogenesis and vRNA neosynthesis.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Dániel Molnár, Éva Viola Surányi ... Judit Toth
    Research Article

    The sustained success of Mycobacterium tuberculosis as a pathogen arises from its ability to persist within macrophages for extended periods and its limited responsiveness to antibiotics. Furthermore, the high incidence of resistance to the few available antituberculosis drugs is a significant concern, especially since the driving forces of the emergence of drug resistance are not clear. Drug-resistant strains of Mycobacterium tuberculosis can emerge through de novo mutations, however, mycobacterial mutation rates are low. To unravel the effects of antibiotic pressure on genome stability, we determined the genetic variability, phenotypic tolerance, DNA repair system activation, and dNTP pool upon treatment with current antibiotics using Mycobacterium smegmatis. Whole-genome sequencing revealed no significant increase in mutation rates after prolonged exposure to first-line antibiotics. However, the phenotypic fluctuation assay indicated rapid adaptation to antibiotics mediated by non-genetic factors. The upregulation of DNA repair genes, measured using qPCR, suggests that genomic integrity may be maintained through the activation of specific DNA repair pathways. Our results, indicating that antibiotic exposure does not result in de novo adaptive mutagenesis under laboratory conditions, do not lend support to the model suggesting antibiotic resistance development through drug pressure-induced microevolution.