Abstract

Renal macrophages represent a highly heterogeneous and specialized population of myeloid cells with mixed developmental origins from the yolk-sac and hematopoietic stem cells (HSC). They promote both injury and repair by regulating inflammation, angiogenesis, and tissue remodeling. Recent reports highlight differential roles for ontogenically distinct renal macrophage populations in disease. However, little is known about how these populations change over time in normal, uninjured kidneys. Prior reports demonstrated a high proportion of HSC-derived macrophages in the young adult kidney. Unexpectedly, using genetic fate-mapping and parabiosis studies, we found that yolk-sac-derived macrophages progressively expand in number with age and become a major contributor to the renal macrophage population in older mice. This chronological shift in macrophage composition involves local cellular proliferation and recruitment from circulating progenitors and may contribute to the distinct immune responses, limited reparative capacity, and increased disease susceptibility of kidneys in the elderly population.

Data availability

All data generated or analyzed during this study are included in the manuscript.

Article and author information

Author details

  1. Shintaro Ide

    Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yasuhito Yahara

    Department of Orthopedic Surgery, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yoshihiko Kobayashi

    Department of Cell Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sarah A Strausser

    Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kana Ide

    Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Anisha Watwe

    Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Shengjie Xu-Vanpala

    Department of Immunology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jamie R Privratsky

    Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Steven D Crowley

    Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Mari L Shinohara

    Department of Immunology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Benjamin A Alman

    Department of Orthopedic Surgery, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Tomokazu Souma

    Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, United States
    For correspondence
    tomokazu.souma@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3285-8613

Funding

American Society of Nephrology (Career Developmental Grant)

  • Tomokazu Souma

Duke University School of Medicine (Start-up Fund)

  • Tomokazu Souma

National Institute on Aging (R01 AG049745)

  • Benjamin A Alman

National Institute of Allergy and Infectious Diseases (AI088100)

  • Mari L Shinohara

American Heart Association (Postdoctoral fellowship)

  • Shintaro Ide

Kanzawa Medical Research Foundation (Fellowship)

  • Yasuhito Yahara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animals were used according to the approved protocols (A051-18-02 and A196-16-0) by the Institutional Animal Care and Use Committee of Duke University.

Copyright

© 2020, Ide et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,484
    views
  • 501
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shintaro Ide
  2. Yasuhito Yahara
  3. Yoshihiko Kobayashi
  4. Sarah A Strausser
  5. Kana Ide
  6. Anisha Watwe
  7. Shengjie Xu-Vanpala
  8. Jamie R Privratsky
  9. Steven D Crowley
  10. Mari L Shinohara
  11. Benjamin A Alman
  12. Tomokazu Souma
(2020)
Yolk-sac-derived macrophages progressively expand in the mouse kidney with age
eLife 9:e51756.
https://doi.org/10.7554/eLife.51756

Share this article

https://doi.org/10.7554/eLife.51756

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Axelle Amen, Randy Yoo ... Matthijs M Jore
    Research Article

    Circulating sexual stages of Plasmodium falciparum (Pf) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies can efficiently block parasite transmission. In search for naturally acquired antibodies targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of Pf in the form of gametes and gametocyte extracts. We isolated mAbs reactive against a range of Pf proteins including well-established targets Pfs48/45 and Pfs230. One mAb, B1E11K, was cross-reactive to various proteins containing glutamate-rich repetitive elements expressed at different stages of the parasite life cycle. A crystal structure of two B1E11K Fab domains in complex with its main antigen, RESA, expressed on asexual blood stages, showed binding of B1E11K to a repeating epitope motif in a head-to-head conformation engaging in affinity-matured homotypic interactions. Thus, this mode of recognition of Pf proteins, previously described only for Pf circumsporozoite protein (PfCSP), extends to other repeats expressed across various stages. The findings augment our understanding of immune-pathogen interactions to repeating elements of the Plasmodium parasite proteome and underscore the potential of the novel mAb identification method used to provide new insights into the natural humoral immune response against Pf.

    1. Immunology and Inflammation
    Yalan Jiang, Pingping He ... Xiaoou Shan
    Research Article

    Type 1 diabetes mellitus (T1DM), known as insulin-dependent diabetes mellitus, is characterized by persistent hyperglycemia resulting from damage to the pancreatic β cells and an absolute deficiency of insulin, leading to multi-organ involvement and a poor prognosis. The progression of T1DM is significantly influenced by oxidative stress and apoptosis. The natural compound eugenol (EUG) possesses anti-inflammatory, anti-oxidant, and anti-apoptotic properties. However, the potential effects of EUG on T1DM had not been investigated. In this study, we established the streptozotocin (STZ)-induced T1DM mouse model in vivo and STZ-induced pancreatic β cell MIN6 cell model in vitro to investigate the protective effects of EUG on T1DM, and tried to elucidate its potential mechanism. Our findings demonstrated that the intervention of EUG could effectively induce the activation of nuclear factor E2-related factor 2 (NRF2), leading to an up-regulation in the expressions of downstream proteins NQO1 and HMOX1, which are regulated by NRF2. Moreover, this intervention exhibited a significant amelioration in pancreatic β cell damage associated with T1DM, accompanied by an elevation in insulin secretion and a reduction in the expression levels of apoptosis and oxidative stress-related markers. Furthermore, ML385, an NRF2 inhibitor, reversed these effects of EUG. The present study suggested that EUG exerted protective effects on pancreatic β cells in T1DM by attenuating apoptosis and oxidative stress through the activation of the NRF2 signaling pathway. Consequently, EUG holds great promise as a potential therapeutic candidate for T1DM.