Abstract

Renal macrophages represent a highly heterogeneous and specialized population of myeloid cells with mixed developmental origins from the yolk-sac and hematopoietic stem cells (HSC). They promote both injury and repair by regulating inflammation, angiogenesis, and tissue remodeling. Recent reports highlight differential roles for ontogenically distinct renal macrophage populations in disease. However, little is known about how these populations change over time in normal, uninjured kidneys. Prior reports demonstrated a high proportion of HSC-derived macrophages in the young adult kidney. Unexpectedly, using genetic fate-mapping and parabiosis studies, we found that yolk-sac-derived macrophages progressively expand in number with age and become a major contributor to the renal macrophage population in older mice. This chronological shift in macrophage composition involves local cellular proliferation and recruitment from circulating progenitors and may contribute to the distinct immune responses, limited reparative capacity, and increased disease susceptibility of kidneys in the elderly population.

Data availability

All data generated or analyzed during this study are included in the manuscript.

Article and author information

Author details

  1. Shintaro Ide

    Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yasuhito Yahara

    Department of Orthopedic Surgery, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yoshihiko Kobayashi

    Department of Cell Biology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sarah A Strausser

    Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kana Ide

    Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Anisha Watwe

    Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Shengjie Xu-Vanpala

    Department of Immunology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jamie R Privratsky

    Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Steven D Crowley

    Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Mari L Shinohara

    Department of Immunology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Benjamin A Alman

    Department of Orthopedic Surgery, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Tomokazu Souma

    Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, United States
    For correspondence
    tomokazu.souma@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3285-8613

Funding

American Society of Nephrology (Career Developmental Grant)

  • Tomokazu Souma

Duke University School of Medicine (Start-up Fund)

  • Tomokazu Souma

National Institute on Aging (R01 AG049745)

  • Benjamin A Alman

National Institute of Allergy and Infectious Diseases (AI088100)

  • Mari L Shinohara

American Heart Association (Postdoctoral fellowship)

  • Shintaro Ide

Kanzawa Medical Research Foundation (Fellowship)

  • Yasuhito Yahara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animals were used according to the approved protocols (A051-18-02 and A196-16-0) by the Institutional Animal Care and Use Committee of Duke University.

Copyright

© 2020, Ide et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,561
    views
  • 508
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shintaro Ide
  2. Yasuhito Yahara
  3. Yoshihiko Kobayashi
  4. Sarah A Strausser
  5. Kana Ide
  6. Anisha Watwe
  7. Shengjie Xu-Vanpala
  8. Jamie R Privratsky
  9. Steven D Crowley
  10. Mari L Shinohara
  11. Benjamin A Alman
  12. Tomokazu Souma
(2020)
Yolk-sac-derived macrophages progressively expand in the mouse kidney with age
eLife 9:e51756.
https://doi.org/10.7554/eLife.51756

Share this article

https://doi.org/10.7554/eLife.51756

Further reading

    1. Immunology and Inflammation
    Zhiyan Wang, Nore Ojogun ... Mingfang Lu
    Research Article

    The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) has been increasing worldwide. Since gut-derived bacterial lipopolysaccharides (LPS) can travel via the portal vein to the liver and play an important role in producing hepatic pathology, it seemed possible that (1) LPS stimulates hepatic cells to accumulate lipid, and (2) inactivating LPS can be preventive. Acyloxyacyl hydrolase (AOAH), the eukaryotic lipase that inactivates LPS and oxidized phospholipids, is produced in the intestine, liver, and other organs. We fed mice either normal chow or a high-fat diet for 28 weeks and found that Aoah-/- mice accumulated more hepatic lipid than did Aoah+/+ mice. In young mice, before increased hepatic fat accumulation was observed, Aoah-/- mouse livers increased their abundance of sterol regulatory element-binding protein 1, and the expression of its target genes that promote fatty acid synthesis. Aoah-/- mice also increased hepatic expression of Cd36 and Fabp3, which mediate fatty acid uptake, and decreased expression of fatty acid-oxidation-related genes Acot2 and Ppara. Our results provide evidence that increasing AOAH abundance in the gut, bloodstream, and/or liver may be an effective strategy for preventing or treating MASLD.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Malika Hale, Kennidy K Takehara ... Marion Pepper
    Research Article

    Pseudomonas aeruginosa (PA) is an opportunistic, frequently multidrug-resistant pathogen that can cause severe infections in hospitalized patients. Antibodies against the PA virulence factor, PcrV, protect from death and disease in a variety of animal models. However, clinical trials of PcrV-binding antibody-based products have thus far failed to demonstrate benefit. Prior candidates were derivations of antibodies identified using protein-immunized animal systems and required extensive engineering to optimize binding and/or reduce immunogenicity. Of note, PA infections are common in people with cystic fibrosis (pwCF), who are generally believed to mount normal adaptive immune responses. Here, we utilized a tetramer reagent to detect and isolate PcrV-specific B cells in pwCF and, via single-cell sorting and paired-chain sequencing, identified the B cell receptor (BCR) variable region sequences that confer PcrV-specificity. We derived multiple high affinity anti-PcrV monoclonal antibodies (mAbs) from PcrV-specific B cells across three donors, including mAbs that exhibit potent anti-PA activity in a murine pneumonia model. This robust strategy for mAb discovery expands what is known about PA-specific B cells in pwCF and yields novel mAbs with potential for future clinical use.