A MAC2-positive progenitor-like microglial population is resistant to CSF1R inhibition in adult mouse brain

  1. Lihong Zhan
  2. Li Fan
  3. Lay Kodama
  4. Peter Dongmin Sohn
  5. Man Ying Wong
  6. Gergey Alzaem Mousa
  7. Yungui Zhou
  8. Yaqiao Li
  9. Li Gan  Is a corresponding author
  1. Gladstone Institutes, United States
  2. Weill Cornell Medicine, United States

Abstract

Microglia are the resident myeloid cells in the central nervous system (CNS). The majority of microglia rely on CSF1R signaling for survival. However, a small subset of microglia in mouse brains can survive without CSF1R signaling and reestablish the microglial homeostatic population after CSF1R signaling returns. Using single-cell transcriptomic analysis, we characterized the heterogeneous microglial populations under CSF1R inhibition, including microglia with reduced homeostatic markers and elevated markers of inflammatory chemokines and proliferation. Importantly, MAC2/Lgals3 was upregulated under CSF1R inhibition, and shared striking similarities with microglial progenitors in the yolk sac and immature microglia in early embryos. Lineage-tracing studies revealed that these MAC2+ cells were of microglial origin. MAC2+ microglia were also present in non-treated adult mouse brains and exhibited immature transcriptomic signatures indistinguishable from those that survived CSF1R inhibition, supporting the notion that MAC2+ progenitor-like cells are present among adult microglia.

Data availability

The raw count matrix of the scRNA-seq data can be accessed on GEO with accession number (GSE150169). A list of R codes used for the analyses are available on Github (https://github.com/lifan36/Zhan-Fan-et-al-2019-scRNAseq).

The following data sets were generated

Article and author information

Author details

  1. Lihong Zhan

    Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, United States
    Competing interests
    No competing interests declared.
  2. Li Fan

    Helen and Robert Appel Alzheimer's Disease Institute, Weill Cornell Medicine, New York, United States
    Competing interests
    No competing interests declared.
  3. Lay Kodama

    Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, United States
    Competing interests
    No competing interests declared.
  4. Peter Dongmin Sohn

    Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, United States
    Competing interests
    No competing interests declared.
  5. Man Ying Wong

    Helen and Robert Appel Alzheimer's Disease Institute, Weill Cornell Medicine, New York, United States
    Competing interests
    No competing interests declared.
  6. Gergey Alzaem Mousa

    Helen and Robert Appel Alzheimer's Disease Institute, Weill Cornell Medicine, New York, United States
    Competing interests
    No competing interests declared.
  7. Yungui Zhou

    Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, United States
    Competing interests
    No competing interests declared.
  8. Yaqiao Li

    Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, United States
    Competing interests
    No competing interests declared.
  9. Li Gan

    Helen and Robert Appel Alzheimer's Disease Institute, Weill Cornell Medicine, New York, United States
    For correspondence
    lig2033@med.cornell.edu
    Competing interests
    Li Gan, Li Gan is a founder of Aeton Therapeutics, Inc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4600-275X

Funding

National Institutes of Health (1R01AG054214-01A1)

  • Li Gan

National Institutes of Health (U54NS100717)

  • Li Gan

National Institutes of Health (R01AG051390)

  • Li Gan

Tau Consortium grant

  • Li Gan

National Institute of Aging (F30 AG062043-02)

  • Lay Kodama

National Institutes of Health (T32GM007618)

  • Lay Kodama

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#AN173162-02) of the University of California, San Francisco.

Reviewing Editor

  1. Beth Stevens, Boston Children's Hospital, United States

Version history

  1. Received: September 11, 2019
  2. Accepted: October 14, 2020
  3. Accepted Manuscript published: October 15, 2020 (version 1)
  4. Version of Record published: October 27, 2020 (version 2)

Copyright

© 2020, Zhan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,360
    Page views
  • 499
    Downloads
  • 34
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lihong Zhan
  2. Li Fan
  3. Lay Kodama
  4. Peter Dongmin Sohn
  5. Man Ying Wong
  6. Gergey Alzaem Mousa
  7. Yungui Zhou
  8. Yaqiao Li
  9. Li Gan
(2020)
A MAC2-positive progenitor-like microglial population is resistant to CSF1R inhibition in adult mouse brain
eLife 9:e51796.
https://doi.org/10.7554/eLife.51796

Further reading

    1. Cell Biology
    2. Neuroscience
    Elisabeth Jongsma, Anita Goyala ... Collin Yvès Ewald
    Research Article Updated

    The amyloid beta (Aβ) plaques found in Alzheimer’s disease (AD) patients’ brains contain collagens and are embedded extracellularly. Several collagens have been proposed to influence Aβ aggregate formation, yet their role in clearance is unknown. To investigate the potential role of collagens in forming and clearance of extracellular aggregates in vivo, we created a transgenic Caenorhabditis elegans strain that expresses and secretes human Aβ1-42. This secreted Aβ forms aggregates in two distinct places within the extracellular matrix. In a screen for extracellular human Aβ aggregation regulators, we identified different collagens to ameliorate or potentiate Aβ aggregation. We show that a disintegrin and metalloprotease a disintegrin and metalloprotease 2 (ADM-2), an ortholog of ADAM9, reduces the load of extracellular Aβ aggregates. ADM-2 is required and sufficient to remove the extracellular Aβ aggregates. Thus, we provide in vivo evidence of collagens essential for aggregate formation and metalloprotease participating in extracellular Aβ aggregate removal.

    1. Computational and Systems Biology
    2. Neuroscience
    Marjorie Xie, Samuel P Muscinelli ... Ashok Litwin-Kumar
    Research Article Updated

    The cerebellar granule cell layer has inspired numerous theoretical models of neural representations that support learned behaviors, beginning with the work of Marr and Albus. In these models, granule cells form a sparse, combinatorial encoding of diverse sensorimotor inputs. Such sparse representations are optimal for learning to discriminate random stimuli. However, recent observations of dense, low-dimensional activity across granule cells have called into question the role of sparse coding in these neurons. Here, we generalize theories of cerebellar learning to determine the optimal granule cell representation for tasks beyond random stimulus discrimination, including continuous input-output transformations as required for smooth motor control. We show that for such tasks, the optimal granule cell representation is substantially denser than predicted by classical theories. Our results provide a general theory of learning in cerebellum-like systems and suggest that optimal cerebellar representations are task-dependent.