Spatiotemporal patterns of neocortical activity around hippocampal sharp-wave ripples

  1. Javad Karimi Abadchi
  2. Mojtaba Nazari-Ahangarkolaee
  3. Sandra Gattas
  4. Edgar Bermudez-Contreras
  5. Artur Luczak
  6. Bruce L McNaughton  Is a corresponding author
  7. Majid H Mohajerani  Is a corresponding author
  1. University of Lethbridge, Canada
  2. University of California, Irvine, United States

Abstract

A prevalent model is that sharp-wave ripples (SWR) arise 'spontaneously' in CA3 and propagate recent memory traces outward to the neocortex to facilitate memory consolidation there. Using voltage and extracellular glutamate transient recording over widespread regions of mice dorsal neocortex in relation to CA1 multiunit activity (MUA) and SWR, we find that the largest SWR-related modulation occurs in retrosplenial cortex; however, contrary to the unidirectional hypothesis, neocortical activation exhibited a continuum of activation timings relative to SWRs, varying from leading to lagging. Thus, contrary to the model in which SWRs arise 'spontaneously' in the hippocampus, neocortical activation often precedes SWRs and may thus constitute a trigger event in which neocortical information seeds associative reactivation of hippocampal 'indices'. This timing continuum is consistent with a dynamics in which older, more consolidated memories may in fact initiate the hippocampal-neocortical dialog, whereas reactivation of newer memories may be initiated predominantly in the hippocampus.

Data availability

All data analyzed and used to produce the main findings of this study have been deposited on Dryad. Source data files have been provided for Figures 2, 3, 5, and 7.

The following data sets were generated

Article and author information

Author details

  1. Javad Karimi Abadchi

    Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Mojtaba Nazari-Ahangarkolaee

    Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Sandra Gattas

    Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Edgar Bermudez-Contreras

    Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4937-1780
  5. Artur Luczak

    Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Bruce L McNaughton

    Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
    For correspondence
    bruce.mcnaughton@uleth.ca
    Competing interests
    The authors declare that no competing interests exist.
  7. Majid H Mohajerani

    Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada
    For correspondence
    mohajerani@uleth.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0964-2977

Funding

Natural Sciences and Engineering Research Council of Canada (40352)

  • Majid H Mohajerani

Natural Sciences and Engineering Research Council of Canada (1631465)

  • Bruce L McNaughton

Alberta Innovates - Health Solutions

  • Majid H Mohajerani

Canadian Institutes of Health Research (390930)

  • Majid H Mohajerani

Canadian Institutes of Health Research (156040)

  • Bruce L McNaughton

Defense Advanced Research Projects Agency (HR0011-18-2-0021)

  • Bruce L McNaughton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The animal housing, handling, and surgery protocols (#1812) were approved by the University of Lethbridge Animal Care Committee and were in accordance with guidelines set forth by the Canadian Council for Animal Care.

Copyright

© 2020, Karimi Abadchi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,532
    views
  • 1,024
    downloads
  • 99
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Javad Karimi Abadchi
  2. Mojtaba Nazari-Ahangarkolaee
  3. Sandra Gattas
  4. Edgar Bermudez-Contreras
  5. Artur Luczak
  6. Bruce L McNaughton
  7. Majid H Mohajerani
(2020)
Spatiotemporal patterns of neocortical activity around hippocampal sharp-wave ripples
eLife 9:e51972.
https://doi.org/10.7554/eLife.51972

Share this article

https://doi.org/10.7554/eLife.51972

Further reading

    1. Neuroscience
    Julien Rossato, François Hug ... Simon Avrillon
    Tools and Resources

    Decoding the activity of individual neural cells during natural behaviours allows neuroscientists to study how the nervous system generates and controls movements. Contrary to other neural cells, the activity of spinal motor neurons can be determined non-invasively (or minimally invasively) from the decomposition of electromyographic (EMG) signals into motor unit firing activities. For some interfacing and neuro-feedback investigations, EMG decomposition needs to be performed in real time. Here, we introduce an open-source software that performs real-time decoding of motor neurons using a blind-source separation approach for multichannel EMG signal processing. Separation vectors (motor unit filters) are optimised for each motor unit from baseline contractions and then re-applied in real time during test contractions. In this way, the firing activity of multiple motor neurons can be provided through different forms of visual feedback. We provide a complete framework with guidelines and examples of recordings to guide researchers who aim to study movement control at the motor neuron level. We first validated the software with synthetic EMG signals generated during a range of isometric contraction patterns. We then tested the software on data collected using either surface or intramuscular electrode arrays from five lower limb muscles (gastrocnemius lateralis and medialis, vastus lateralis and medialis, and tibialis anterior). We assessed how the muscle or variation of contraction intensity between the baseline contraction and the test contraction impacted the accuracy of the real-time decomposition. This open-source software provides a set of tools for neuroscientists to design experimental paradigms where participants can receive real-time feedback on the output of the spinal cord circuits.

    1. Neuroscience
    John P Veillette, Fan Gao, Howard C Nusbaum
    Research Article

    Sensory signals from the body’s visceral organs (e.g. the heart) can robustly influence the perception of exteroceptive sensations. This interoceptive–exteroceptive interaction has been argued to underlie self-awareness by situating one’s perceptual awareness of exteroceptive stimuli in the context of one’s internal state, but studies probing cardiac influences on visual awareness have yielded conflicting findings. In this study, we presented separate grating stimuli to each of subjects’ eyes as in a classic binocular rivalry paradigm – measuring the duration for which each stimulus dominates in perception. However, we caused the gratings to ‘pulse’ at specific times relative to subjects’ real-time electrocardiogram, manipulating whether pulses occurred during cardiac systole, when baroreceptors signal to the brain that the heart has contracted, or in diastole when baroreceptors are silent. The influential ‘Baroreceptor Hypothesis’ predicts the effect of baroreceptive input on visual perception should be uniformly suppressive. In contrast, we observed that dominance durations increased for systole-entrained stimuli, inconsistent with the Baroreceptor Hypothesis. Furthermore, we show that this cardiac-dependent rivalry effect is preserved in subjects who are at-chance discriminating between systole-entrained and diastole-presented stimuli in a separate interoceptive awareness task, suggesting that our results are not dependent on conscious access to heartbeat sensations.