Gab1 mediates PDGF signaling and is essential to oligodendrocyte differentiation and CNS myelination

  1. Liang Zhou
  2. Chong-Yu Shao
  3. Ya-Jun Xie
  4. Na Wang
  5. Si-Min Xu
  6. Ben-Yan Luo
  7. Zhi-Ying Wu
  8. Yue Hai Ke
  9. Mengsheng Qiu
  10. Ying Shen  Is a corresponding author
  1. Zhejiang University School of Medicine, China
  2. Zhejiang University City College, China
  3. Hangzhou Normal University, China

Abstract

Oligodendrocytes (OLs) myelinate axons and provide electrical insulation and trophic support for neurons in the central nervous system (CNS). Platelet-derived growth factor (PDGF) is critical for steady-state number and differentiation of oligodendrocyte precursor cells (OPCs), but its downstream targets are unclear. Here, we show for the first time that Gab1, an adaptor protein of receptor tyrosine kinase, is specifically expressed in OL lineage cells and is an essential effector of PDGF signaling in OPCs in mice. Gab1 is down-regulated by PDGF stimulation and up-regulated during OPC differentiation. Conditional deletions of Gab1 in OLs cause CNS hypomyelination by affecting OPC differentiation. Moreover, Gab1 binds to downstream GSK3β and regulated its activity, and thereby affects the nuclear accumulation of β-catenin and the expression of a number of transcription factors critical to myelination. Our work uncovers a novel downstream target of PDGF signaling, which is essential to OPC differentiation and CNS myelination.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Liang Zhou

    Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Chong-Yu Shao

    Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Ya-Jun Xie

    Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Na Wang

    School of Medicine, Zhejiang University City College, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Si-Min Xu

    Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Ben-Yan Luo

    Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Zhi-Ying Wu

    Department of Neurology and Research Center of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University School of Medicine, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Yue Hai Ke

    Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Mengsheng Qiu

    Institute of Life Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Ying Shen

    Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
    For correspondence
    yshen@zju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7034-5328

Funding

Ministry of Science and Technology of the People's Republic of China (2017YFA0104200)

  • Ying Shen

National Natural Science Foundation of China (31571051)

  • Liang Zhou

National Natural Science Foundation of China (81625006)

  • Ying Shen

National Natural Science Foundation of China (31820103005)

  • Ying Shen

Natural Science Foundation of Zhejiang Province (Z15C090001)

  • Ying Shen

Natural Science Foundation of Zhejiang Province (LQ17C090001)

  • Na Wang

Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (2017PT31038)

  • Ying Shen

Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (2018PT31041)

  • Ying Shen

Chinese Ministry of Education Project 111 Program (B13026)

  • Ying Shen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Moses V Chao, New York University Langone Medical Center, United States

Ethics

Animal experimentation: All of the animals were handled according to approved protocol (ZJU20160019) of the Animal Experimentation Ethics Committee of Zhejiang University.

Version history

  1. Received: September 20, 2019
  2. Accepted: January 14, 2020
  3. Accepted Manuscript published: January 16, 2020 (version 1)
  4. Version of Record published: January 27, 2020 (version 2)

Copyright

© 2020, Zhou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,796
    Page views
  • 316
    Downloads
  • 15
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Liang Zhou
  2. Chong-Yu Shao
  3. Ya-Jun Xie
  4. Na Wang
  5. Si-Min Xu
  6. Ben-Yan Luo
  7. Zhi-Ying Wu
  8. Yue Hai Ke
  9. Mengsheng Qiu
  10. Ying Shen
(2020)
Gab1 mediates PDGF signaling and is essential to oligodendrocyte differentiation and CNS myelination
eLife 9:e52056.
https://doi.org/10.7554/eLife.52056

Share this article

https://doi.org/10.7554/eLife.52056

Further reading

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

    1. Medicine
    2. Neuroscience
    Luisa Fassi, Shachar Hochman ... Roi Cohen Kadosh
    Research Article

    In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual’s subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants’ subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.