1. Neuroscience
Download icon

Medial entorhinal cortex activates in a traveling wave in the rat

  1. Jesus J Hernández-Pérez  Is a corresponding author
  2. Keiland W Cooper
  3. Ehren L Newman
  1. Indiana University Bloomington, United States
Research Article
  • Cited 2
  • Views 1,528
  • Annotations
Cite this article as: eLife 2020;9:e52289 doi: 10.7554/eLife.52289

Abstract

Traveling waves are hypothesized to support the long-range coordination of anatomically distributed circuits. Whether separate strongly-interacting circuits exhibit traveling waves remains unknown. The hippocampus exhibits traveling 'theta' waves and interacts strongly with the medial entorhinal cortex (MEC). To determine whether the MEC also activates in a traveling wave, we performed extracellular recordings of LFP and multi-unit activity along the MEC. These recordings revealed progressive phase shifts in activity, indicating that the MEC also activates in a traveling wave. Variation in theta waveform along the region, generated by gradients in local physiology, contributed to the observed phase shifts. Removing waveform-related phase shifts left significant residual phase shifts. The residual phase shifts covaried with theta frequency in a manner consistent with those generated by weakly coupled oscillators. These results show that coordination of anatomically distributed circuits could be enabled by traveling waves but reveal heterogeneity in the mechanisms generating those waves.

Article and author information

Author details

  1. Jesus J Hernández-Pérez

    Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, United States
    For correspondence
    jjhern@iu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6963-4712
  2. Keiland W Cooper

    Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0358-9645
  3. Ehren L Newman

    Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Whitehall Foundation

  • Ehren L Newman

Consejo Nacional de Ciencia y Tecnología (232364)

  • Jesus J Hernández-Pérez

Indiana University Bloomington

  • Ehren L Newman

The funders provided resources for the study design, data collection, and interpretation.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#18-026) of Indiana University, Bloomington. The protocol was approved by the Committee on the Ethics of Animal Experiments of Indiana University, Bloomington (Animal Welfare Assurance Number D16-00587). All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Neil Burgess, University College London, United Kingdom

Publication history

  1. Received: September 28, 2019
  2. Accepted: February 4, 2020
  3. Accepted Manuscript published: February 14, 2020 (version 1)
  4. Version of Record published: February 27, 2020 (version 2)

Copyright

© 2020, Hernández-Pérez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,528
    Page views
  • 282
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Medicine
    2. Neuroscience
    Ekemini AU Riley, Randy Schekman
    Feature Article

    The Aligning Science Across Parkinson’s (ASAP) initiative was set up to improve understanding of the biology underlying the onset and progression of Parkinson’s disease. With an emphasis on open science and collaboration, we have assembled a research network led by nearly 100 investigators to explore the pathology of Parkinson’s disease, and this network will soon expand to include researchers working on relevant (dys)-functional neural circuits. We have also contributed to large-scale genetics and patient cohort initiatives related to the disease. We hope that these actions, and others planned for the future, will deepen our knowledge of the molecular mechanisms underlying the origin and evolution of Parkinson’s disease and, ultimately, contribute to the development of novel therapies.

    1. Neuroscience
    Toshihide W Yoshioka et al.
    Research Article

    The division of labor between the dorsal and ventral visual pathways has been well studied, but not often with direct comparison at the single-neuron resolution with matched stimuli. Here we directly compared how single neurons in MT and V4, mid-tier areas of the two pathways, process binocular disparity, a powerful cue for 3D perception and actions. We found that MT neurons transmitted disparity signals more quickly and robustly, whereas V4 or its upstream neurons transformed the signals into sophisticated representations more prominently. Therefore, signaling speed and robustness were traded for transformation between the dorsal and ventral pathways. The key factor in this tradeoff was disparity-tuning shape: V4 neurons had more even-symmetric tuning than MT neurons. Moreover, the tuning symmetry predicted the degree of signal transformation across neurons similarly within each area, implying a general role of tuning symmetry in the stereoscopic processing by the two pathways.