Ankyrin-G mediates targeting of both Na+ and KATP channels to the rat cardiac intercalated disc

  1. Hua-Qian Yang
  2. Marta Pérez-Hernández
  3. Jose Sanchez-Alonso
  4. Andriy Shevchuk
  5. Julia Gorelik
  6. Eli Rothenberg
  7. Mario Delmar
  8. William A Coetzee  Is a corresponding author
  1. New York University School of Medicine, United States
  2. Imperial College London, United Kingdom

Abstract

We investigated targeting mechanisms of Na+ and KATP channels to the intercalated disk (ICD) of cardiomyocytes. Patch clamp and surface biotinylation data show reciprocal downregulation of each other's surface density. Mutagenesis of the Kir6.2 ankyrin binding site disrupts this functional coupling. Duplex patch clamping and Angle SICM recordings show that INa and IKATP functionally co-localize at the rat ICD, but not at the lateral membrane. Quantitative STORM imaging show that Na+ and KATP channels are localized close to each other and to AnkG, but not to AnkB, at the ICD. Peptides corresponding to Nav1.5 and Kir6.2 ankyrin binding sites dysregulate targeting of both Na+ and KATP channels to the ICD, but not to lateral membranes. Finally, a clinically relevant gene variant that disrupts KATP channel trafficking also regulates Na+ channel surface expression. The functional coupling between these two channels need to be considered when assessing clinical variants and therapeutics.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Hua-Qian Yang

    Department of Pediatrics, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Marta Pérez-Hernández

    Department of Medicine, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jose Sanchez-Alonso

    National Heart and Lung Institute, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Andriy Shevchuk

    Department of Medicine, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Julia Gorelik

    National Heart and Lung Institute, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1148-9158
  6. Eli Rothenberg

    Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1382-1380
  7. Mario Delmar

    Department of Medicine, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. William A Coetzee

    Department of Pediatrics, New York University School of Medicine, New York, United States
    For correspondence
    william.coetzee@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1522-8326

Funding

National Institutes of Health (HL126905)

  • William A Coetzee

National Institutes of Health (HL145911)

  • Mario Delmar

National Institutes of Health (HL126802)

  • Julia Gorelik

Leducq Foundation

  • Eli Rothenberg
  • Mario Delmar

Rafael del Pino Foundation

  • Marta Pérez-Hernández

Biotechnology and Biological Sciences Research Council (BB/M022080)

  • Andriy Shevchuk

British Heart Foundation (RG/17/13/33173)

  • Jose Sanchez-Alonso
  • Julia Gorelik

American Heart Association (17POST33370050)

  • Hua-Qian Yang

National Institutes of Health (HL146514)

  • William A Coetzee

National Institutes of Health (HL134328)

  • Mario Delmar

National Institutes of Health (HL136179)

  • Mario Delmar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Baron Chanda, University of Wisconsin-Madison, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of New York University School of Medicine (protocol s17-00352).

Version history

  1. Received: October 2, 2019
  2. Accepted: January 11, 2020
  3. Accepted Manuscript published: January 14, 2020 (version 1)
  4. Version of Record published: January 24, 2020 (version 2)

Copyright

© 2020, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,694
    views
  • 310
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hua-Qian Yang
  2. Marta Pérez-Hernández
  3. Jose Sanchez-Alonso
  4. Andriy Shevchuk
  5. Julia Gorelik
  6. Eli Rothenberg
  7. Mario Delmar
  8. William A Coetzee
(2020)
Ankyrin-G mediates targeting of both Na+ and KATP channels to the rat cardiac intercalated disc
eLife 9:e52373.
https://doi.org/10.7554/eLife.52373

Share this article

https://doi.org/10.7554/eLife.52373

Further reading

    1. Medicine
    Ruijie Zeng, Yuying Ma ... Hao Chen
    Research Article

    Background:

    Adverse effects of proton pump inhibitors (PPIs) have raised wide concerns. The association of PPIs with influenza is unexplored, while that with pneumonia or COVID-19 remains controversial. Our study aims to evaluate whether PPI use increases the risks of these respiratory infections.

    Methods:

    The current study included 160,923 eligible participants at baseline who completed questionnaires on medication use, which included PPI or histamine-2 receptor antagonist (H2RA), from the UK Biobank. Cox proportional hazards regression and propensity score-matching analyses were used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs).

    Results:

    Comparisons with H2RA users were tested. PPI use was associated with increased risks of developing influenza (HR 1.32, 95% CI 1.12–1.56) and pneumonia (hazard ratio [HR] 1.42, 95% confidence interval [CI] 1.26–1.59). In contrast, the risk of COVID-19 infection was not significant with regular PPI use (HR 1.08, 95% CI 0.99–1.17), while the risks of severe COVID-19 (HR 1.19. 95% CI 1.11–1.27) and mortality (HR 1.37. 95% CI 1.29–1.46) were increased. However, when compared with H2RA users, PPI users were associated with a higher risk of influenza (HR 1.74, 95% CI 1.19–2.54), but the risks with pneumonia or COVID-19-related outcomes were not evident.

    Conclusions:

    PPI users are associated with increased risks of influenza, pneumonia, as well as COVID-19 severity and mortality compared to non-users, while the effects on pneumonia or COVID-19-related outcomes under PPI use were attenuated when compared to the use of H2RAs. Appropriate use of PPIs based on comprehensive evaluation is required.

    Funding:

    This work is supported by the National Natural Science Foundation of China (82171698, 82170561, 81300279, 81741067, 82100238), the Program for High-level Foreign Expert Introduction of China (G2022030047L), the Natural Science Foundation for Distinguished Young Scholars of Guangdong Province (2021B1515020003), the Guangdong Basic and Applied Basic Research Foundation (2022A1515012081), the Foreign Distinguished Teacher Program of Guangdong Science and Technology Department (KD0120220129), the Climbing Program of Introduced Talents and High-level Hospital Construction Project of Guangdong Provincial People’s Hospital (DFJH201923, DFJH201803, KJ012019099, KJ012021143, KY012021183), and in part by VA Clinical Merit and ASGE clinical research funds (FWL).

    1. Medicine
    Vitaly Ryu, Anisa Azatovna Gumerova ... Mone Zaidi
    Tools and Resources Updated

    There is clear evidence that the sympathetic nervous system (SNS) mediates bone metabolism. Histological studies show abundant SNS innervation of the periosteum and bone marrow–these nerves consist of noradrenergic fibers that immunostain for tyrosine hydroxylase, dopamine beta-hydroxylase, or neuropeptide Y. Nonetheless, the brain sites that send efferent SNS outflow to the bone have not yet been characterized. Using pseudorabies (PRV) viral transneuronal tracing, we report, for the first time, the identification of central SNS outflow sites that innervate bone. We find that the central SNS outflow to bone originates from 87 brain nuclei, sub-nuclei, and regions of six brain divisions, namely the midbrain and pons, hypothalamus, hindbrain medulla, forebrain, cerebral cortex, and thalamus. We also find that certain sites, such as the raphe magnus (RMg) of the medulla and periaqueductal gray (PAG) of the midbrain, display greater degrees of PRV152 infection, suggesting that there is considerable site-specific variation in the levels of central SNS outflow to the bone. This comprehensive compendium illustrating the central coding and control of SNS efferent signals to bone should allow for a greater understanding of the neural regulation of bone metabolism, and importantly and of clinical relevance, mechanisms for central bone pain.