c-Maf restrains T-bet-driven programming of CCR6-negative group 3 innate lymphoid cells

Abstract

RORgt+ group 3 innate lymphoid cells (ILC3s) maintain intestinal homeostasis through secretion of type 3 cytokines such as interleukin (IL)-17 and IL-22. However, CCR6- ILC3s additionally co-express T-bet allowing for the acquisition of type 1 effector functions. While T-bet controls the type 1 programming of ILC3s, the molecular mechanisms governing T-bet are undefined. Here, we identify c-Maf as a crucial negative regulator of murine T-bet+ CCR6- ILC3s. Phenotypic and transcriptomic profiling of c-Maf-deficient CCR6- ILC3s revealed a hyper type 1 differentiation status, characterized by overexpression of ILC1/NK cell-related genes and downregulation of type 3 signature genes. On the molecular level, c-Maf directly restrained T-bet expression. Conversely, c-Maf expression was dependent on T-bet and regulated by IL-1b, IL-18 and Notch signals. Thus, we define c-Maf as a crucial cell-intrinsic brake in the type 1 effector acquisition which forms a negative feedback loop with T-bet to preserve the identity of CCR6- ILC3s.

Data availability

Sequencing data supporting the findings of this study have been deposited in the Gene Expression Omnibus (GEO) database under the GEO accession number: RNA-Seq: GSE143867.

The following previously published data sets were used

Article and author information

Author details

  1. Caroline Tizian

    Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Annette Lahmann

    Chronic Immune Reactions, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Oliver Hölsken

    Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6086-9275
  4. Catalina Cosovanu

    Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael Kofoed-Branzk

    Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Frederik Heinrich

    Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Mir-Farzin Mashreghi

    Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8015-6907
  8. Andrey Kruglov

    Chronic Inflammation, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Andreas Diefenbach

    Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Christian Neuman

    Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
    For correspondence
    c.neumann@charite.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2202-1876

Funding

Deutsche Forschungsgemeinschaft (Priority Program 1937 "Innate Lymphoid Cells")

  • Christian Neuman

Deutsche Forschungsgemeinschaft (Priority Program 1937 "Innate Lymphoid Cells")

  • Andreas Diefenbach

European Regional Development Fund (ERDF 2014-2020)

  • Mir-Farzin Mashreghi

European Regional Development Fund (EFRE 1.8/11)

  • Mir-Farzin Mashreghi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were in accordance with the ethical standards of the institution or practice at which the studies were conducted and were reviewed and approved by the responsible ethics committees (LAGeSo Berlin, I C 113 - G0172/14).

Copyright

© 2020, Tizian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,439
    views
  • 309
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Caroline Tizian
  2. Annette Lahmann
  3. Oliver Hölsken
  4. Catalina Cosovanu
  5. Michael Kofoed-Branzk
  6. Frederik Heinrich
  7. Mir-Farzin Mashreghi
  8. Andrey Kruglov
  9. Andreas Diefenbach
  10. Christian Neuman
(2020)
c-Maf restrains T-bet-driven programming of CCR6-negative group 3 innate lymphoid cells
eLife 9:e52549.
https://doi.org/10.7554/eLife.52549

Share this article

https://doi.org/10.7554/eLife.52549

Further reading

    1. Immunology and Inflammation
    Donal J Cox, Sarah A Connolly ... Joseph Keane
    Research Article

    Airway macrophages (AM) are the predominant immune cell in the lung and play a crucial role in preventing infection, making them a target for host directed therapy. Macrophage effector functions are associated with cellular metabolism. A knowledge gap remains in understanding metabolic reprogramming and functional plasticity of distinct human macrophage subpopulations, especially in lung resident AM. We examined tissue-resident AM and monocyte-derived macrophages (MDM; as a model of blood derived macrophages) in their resting state and after priming with IFN-γ or IL-4 to model the Th1/Th2 axis in the lung. Human macrophages, regardless of origin, had a strong induction of glycolysis in response to IFN-γ or upon stimulation. IFN-γ significantly enhanced cellular energetics in both AM and MDM by upregulating both glycolysis and oxidative phosphorylation. Upon stimulation, AM do not decrease oxidative phosphorylation unlike MDM which shift to ‘Warburg’-like metabolism. IFN-γ priming promoted cytokine secretion in AM. Blocking glycolysis with 2-deoxyglucose significantly reduced IFN-γ driven cytokine production in AM, indicating that IFN-γ induces functional plasticity in human AM, which is mechanistically mediated by glycolysis. Directly comparing responses between macrophages, AM were more responsive to IFN-γ priming and dependent on glycolysis for cytokine secretion than MDM. Interestingly, TNF production was under the control of glycolysis in AM and not in MDM. MDM exhibited glycolysis-dependent upregulation of HLA-DR and CD40, whereas IFN-γ upregulated HLA-DR and CD40 on AM independently of glycolysis. These data indicate that human AM are functionally plastic and respond to IFN-γ in a manner distinct from MDM. These data provide evidence that human AM are a tractable target for inhalable immunomodulatory therapies for respiratory diseases.