Mitochondrial pyruvate carrier is required for optimal brown fat thermogenesis

  1. Vanja Panic
  2. Stephanie Pearson
  3. James Banks
  4. Trevor S Tippetts
  5. Jesse N Velasco-Silva
  6. Sanghoon Lee
  7. Judith Simcox
  8. Gisela Geoghegan
  9. Claire L Bensard
  10. Tyler van Ry
  11. Will L Holland
  12. Scott A Summers
  13. James Cox
  14. Gregory S Ducker
  15. Jared Rutter
  16. Claudio J Villanueva  Is a corresponding author
  1. University of Utah, United States
  2. The University of Texas Southwestern Medical Center, United States
  3. University of California, Los Angeles, United States

Abstract

Brown adipose tissue (BAT) is composed of thermogenic cells that convert chemical energy into heat to help maintain a constant body temperature and counteract metabolic disease in mammals. The metabolic adaptations required for thermogenesis are not fully understood. Here we explore how steady state levels of metabolic intermediates are altered in brown adipose tissue in response to cold exposure. Transcriptome and metabolome analysis revealed changes in pathways involved in amino acid, glucose, and TCA cycle metabolism. Using isotopic labeling experiments, we found that activated brown adipocytes increased labeling of pyruvate and TCA cycle intermediates from U13C-glucose. Although glucose oxidation has been implicated as being essential for thermogenesis, its requirement for efficient thermogenesis has not been directly tested. Here we show that mitochondrial pyruvate uptake is essential for optimal thermogenesis, as conditional deletion of Mpc1 in brown adipocytes leads to impaired cold adaptation. Isotopic labeling experiments using U13C-glucose showed that loss of MPC1 led to impaired labeling of TCA cycle intermediates, while labeling of glycolytic intermediates was unchanged. Loss of MPC1 in BAT increased 3-hydroxybutyrate levels in blood and BAT in response to the cold, suggesting that ketogenesis provides an alternative fuel source to compensate for impaired mitochondrial oxidation of cytosolic pyruvate. Collectively, these studies highlight that complete glucose oxidation is essential for optimal brown fat thermogenesis.

Data availability

RNA sequencing data will be deposited in GEO under accession codes GSE135391.

The following data sets were generated

Article and author information

Author details

  1. Vanja Panic

    Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Stephanie Pearson

    Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. James Banks

    Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Trevor S Tippetts

    Nutrition and Integrative Physiology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1419-7057
  5. Jesse N Velasco-Silva

    Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sanghoon Lee

    Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Judith Simcox

    Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Gisela Geoghegan

    Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Claire L Bensard

    Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Tyler van Ry

    Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Will L Holland

    Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Scott A Summers

    Nutrition and Integrative Physiology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. James Cox

    Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Gregory S Ducker

    Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Jared Rutter

    Biochemistry, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2710-9765
  16. Claudio J Villanueva

    Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    cvillanueva@ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9731-7463

Funding

National Institutes of Health (1R01DK103930)

  • Claudio J Villanueva

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#18-08004) of the University of Utah. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University of Utah.

Copyright

© 2020, Panic et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,325
    views
  • 587
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vanja Panic
  2. Stephanie Pearson
  3. James Banks
  4. Trevor S Tippetts
  5. Jesse N Velasco-Silva
  6. Sanghoon Lee
  7. Judith Simcox
  8. Gisela Geoghegan
  9. Claire L Bensard
  10. Tyler van Ry
  11. Will L Holland
  12. Scott A Summers
  13. James Cox
  14. Gregory S Ducker
  15. Jared Rutter
  16. Claudio J Villanueva
(2020)
Mitochondrial pyruvate carrier is required for optimal brown fat thermogenesis
eLife 9:e52558.
https://doi.org/10.7554/eLife.52558

Share this article

https://doi.org/10.7554/eLife.52558

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Assmaa Elsheikh, Camden M Driggers ... Show-Ling Shyng
    Research Article

    Pancreatic KATP channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the KATP channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used KATP channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for KATP trafficking-impaired CHI is hindered by high affinity binding, which limits functional recovery of rescued channels. Recent structural studies of KATP channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known KATP pharmacochaperones bind. The structural knowledge provides a framework for discovering KATP channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on KATP channel trafficking mutations. Aekatperone reversibly inhibits KATP channel activity with a half-maximal inhibitory concentration (IC50) ~9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of KATP bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a KATP pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by KATP trafficking defects.

    1. Biochemistry and Chemical Biology
    Vladimir Khayenko, Cihan Makbul ... Hans Michael Maric
    Research Article

    The hepatitis B virus (HBV) infection is a major global health problem, with chronic infection leading to liver complications and high death toll. Current treatments, such as nucleos(t)ide analogs and interferon-α, effectively suppress viral replication but rarely cure the infection. To address this, new antivirals targeting different components of the HBV molecular machinery are being developed. Here we investigated the hepatitis B core protein (HBc) that forms the viral capsids and plays a vital role in the HBV life cycle. We explored two distinct binding pockets on the HBV capsid: the central hydrophobic pocket of HBc-dimers and the pocket at the tips of capsid spikes. We synthesized a geranyl dimer that binds to the central pocket with micromolar affinity, and dimeric peptides that bind the spike-tip pocket with sub-micromolar affinity. Cryo-electron microscopy further confirmed the binding of peptide dimers to the capsid spike tips and their capsid-aggregating properties. Finally, we show that the peptide dimers induce HBc aggregation in vitro and in living cells. Our findings highlight two tractable sites within the HBV capsid and provide an alternative strategy to affect HBV capsids.