1. Neuroscience
Download icon

Opposite changes in APP processing and human aβ levels in rats carrying either a protective or a pathogenic APP mutation

  1. Marc D Tambini
  2. Kelly A Norris
  3. Luciano D'Adamio  Is a corresponding author
  1. Rutgers, The State University of New Jersey, United States
Research Article
  • Cited 4
  • Views 991
  • Annotations
Cite this article as: eLife 2020;9:e52612 doi: 10.7554/eLife.52612


Cleavage of APP by BACE1/b-secretase initiates the amyloidogenic cascade leading to Amyloid-b (Ab) production. a-Secretase initiates the non-amyloidogenic pathway preventing Ab production. Several APP mutations cause familial Alzheimer's disease (AD), while the Icelandic APP mutation near the BACE1-cleavage site protects from sporadic dementia, emphasizing APP's role in dementia pathogenesis. To study APP protective/pathogenic mechanisms, we generated knock-in rats carrying either the protective (Appp) or the pathogenic Swedish mutation (Apps), also located near the BACE1-cleavage site. a-Cleavage is favored over b-processing in Appp rats. Consequently, non-amyloidogenic and amyloidogenic APP metabolites are increased and decreased, respectively. The reverse APP processing shift occurs in Apps rats. These opposite effects on APP b/a-processing suggest that protection from and pathogenesis of dementia depend upon combinatorial and opposite alterations in APP metabolism rather than simply on Ab levels. The Icelandic mutation also protects from aging-dependent cognitive decline, suggesting that similar mechanisms underlie physiological cognitive aging.

Article and author information

Author details

  1. Marc D Tambini

    Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kelly A Norris

    Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Luciano D'Adamio

    Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, Newark, United States
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2204-9441


National Institute on Aging (R01AG063407)

  • Luciano D'Adamio

National Institute on Aging (RF1AG064821)

  • Luciano D'Adamio

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.


Animal experimentation: Rats were handled according to the Ethical Guidelines for Treatment of Laboratory Animals of the NIH. The procedures were described and approved by the Institutional Animal Care and Use Committee (IACUC) at Rutgers University.(protocol number 201702513).

Reviewing Editor

  1. Andrew B West, Duke University, United States

Publication history

  1. Received: October 9, 2019
  2. Accepted: February 3, 2020
  3. Accepted Manuscript published: February 5, 2020 (version 1)
  4. Version of Record published: February 13, 2020 (version 2)


© 2020, Tambini et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 991
    Page views
  • 152
  • 4

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Chen Chen et al.
    Research Article

    While animals track or search for targets, sensory organs make small unexplained movements on top of the primary task-related motions. While multiple theories for these movements exist—in that they support infotaxis, gain adaptation, spectral whitening, and high-pass filtering—predicted trajectories show poor fit to measured trajectories. We propose a new theory for these movements called energy-constrained proportional betting, where the probability of moving to a location is proportional to an expectation of how informative it will be balanced against the movement’s predicted energetic cost. Trajectories generated in this way show good agreement with measured trajectories of fish tracking an object using electrosense, a mammal and an insect localizing an odor source, and a moth tracking a flower using vision. Our theory unifies the metabolic cost of motion with information theory. It predicts sense organ movements in animals and can prescribe sensor motion for robots to enhance performance.

    1. Ecology
    2. Neuroscience
    Felix JH Hol et al.
    Tools and Resources

    Female mosquitoes need a blood meal to reproduce, and in obtaining this essential nutrient they transmit deadly pathogens. Although crucial for the spread of mosquito-borne diseases, blood feeding remains poorly understood due to technological limitations. Indeed, studies often expose human subjects to assess biting behavior. Here, we present the biteOscope, a device that attracts mosquitoes to a host mimic which they bite to obtain an artificial blood meal. The host mimic is transparent, allowing high-resolution imaging of the feeding mosquito. Using machine learning we extract detailed behavioral statistics describing the locomotion, pose, biting, and feeding dynamics of Aedes aegypti, Aedes albopictus, Anopheles stephensi, and Anopheles coluzzii. In addition to characterizing behavioral patterns, we discover that the common insect repellent DEET repels Anopheles coluzzii upon contact with their legs. The biteOscope provides a new perspective on mosquito blood feeding, enabling the high-throughput quantitative characterization of this lethal behavior.