Whole brain delivery of an instability-prone Mecp2 transgene improves behavioral and molecular pathological defects in mouse models of Rett syndrome

  1. Mirko Luoni
  2. Serena Giannelli
  3. Marzia Tina Indrigo
  4. Antonio Niro
  5. Luca Massimino
  6. Angelo Iannielli
  7. Laura Passeri
  8. Fabio Russo
  9. Giuseppe Morabito
  10. Piera Calamita
  11. Silvia Gregori
  12. Benjamin Deverman
  13. Vania Broccoli  Is a corresponding author
  1. San Raffaele Scientific Institute, Italy
  2. National Institute of Molecular Genetics, Italy
  3. Stanley Center for Psychiatric Research at Broad Institute, United States

Abstract

Rett syndrome is an incurable neurodevelopmental disorder caused by mutations in the gene encoding for methyl-CpG binding-protein 2 (MeCP2). Gene therapy for this disease presents inherent hurdles since MECP2 is expressed throughout the brain and its duplication leads to severe neurological conditions as well. Herein, we use the AAV-PHP.eB to deliver an instability-prone Mecp2 (iMecp2) transgene cassette which, increasing RNA destabilization and inefficient protein translation of the viral Mecp2 transgene, limits supraphysiological Mecp2 protein levels. Intravenous injections of the PHP.eB-iMecp2 virus in symptomatic Mecp2 mutant mice significantly improved locomotor activity, lifespan and gene expression normalization. Remarkably, PHP.eB-iMecp2 administration was well tolerated in female Mecp2 mutant or in wild-type animals. In contrast, we observed a strong immune response to the transgene in treated male Mecp2 mutant mice that was overcome by immunosuppression. Overall, PHP.eB-mediated delivery of iMecp2 provided widespread and efficient gene transfer maintaining physiological Mecp2 protein levels in the brain.

Data availability

Sequencing data have been deposited in GEO under accession code GSE125155.

The following data sets were generated

Article and author information

Author details

  1. Mirko Luoni

    Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Serena Giannelli

    Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Marzia Tina Indrigo

    Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Antonio Niro

    Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Luca Massimino

    Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Angelo Iannielli

    Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Laura Passeri

    Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Fabio Russo

    Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Giuseppe Morabito

    Division of Neuroscience, San Raffaele Scientific Institute, Mialno, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Piera Calamita

    National Institute of Molecular Genetics, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9029-9346
  11. Silvia Gregori

    Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  12. Benjamin Deverman

    Stanley Center for Psychiatric Research at Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6223-9303
  13. Vania Broccoli

    Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
    For correspondence
    broccoli.vania@hsr.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4050-0926

Funding

Fondazione Telethon (GGP19038)

  • Mirko Luoni

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed according to protocols approved by the internal IACUC and reported to the Italian Ministry of Health according to the European Communities Council Directive 2010/63/EU.

Copyright

© 2020, Luoni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,753
    views
  • 743
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mirko Luoni
  2. Serena Giannelli
  3. Marzia Tina Indrigo
  4. Antonio Niro
  5. Luca Massimino
  6. Angelo Iannielli
  7. Laura Passeri
  8. Fabio Russo
  9. Giuseppe Morabito
  10. Piera Calamita
  11. Silvia Gregori
  12. Benjamin Deverman
  13. Vania Broccoli
(2020)
Whole brain delivery of an instability-prone Mecp2 transgene improves behavioral and molecular pathological defects in mouse models of Rett syndrome
eLife 9:e52629.
https://doi.org/10.7554/eLife.52629

Share this article

https://doi.org/10.7554/eLife.52629

Further reading

    1. Neuroscience
    Cristina Gil Avila, Elisabeth S May ... Markus Ploner
    Research Article

    Chronic pain is a prevalent and debilitating condition whose neural mechanisms are incompletely understood. An imbalance of cerebral excitation and inhibition (E/I), particularly in the medial prefrontal cortex (mPFC), is believed to represent a crucial mechanism in the development and maintenance of chronic pain. Thus, identifying a non-invasive, scalable marker of E/I could provide valuable insights into the neural mechanisms of chronic pain and aid in developing clinically useful biomarkers. Recently, the aperiodic component of the electroencephalography (EEG) power spectrum has been proposed to represent a non-invasive proxy for E/I. We, therefore, assessed the aperiodic component in the mPFC of resting-state EEG recordings in 149 people with chronic pain and 115 healthy participants. We found robust evidence against differences in the aperiodic component in the mPFC between people with chronic pain and healthy participants, and no correlation between the aperiodic component and pain intensity. These findings were consistent across different subtypes of chronic pain and were similarly found in a whole-brain analysis. Their robustness was supported by preregistration and multiverse analyses across many different methodological choices. Together, our results suggest that the EEG aperiodic component does not differentiate between people with chronic pain and healthy individuals. These findings and the rigorous methodological approach can guide future studies investigating non-invasive, scalable markers of cerebral dysfunction in people with chronic pain and beyond.

    1. Neuroscience
    Claire Meissner-Bernard, Friedemann Zenke, Rainer W Friedrich
    Research Article

    Biological memory networks are thought to store information by experience-dependent changes in the synaptic connectivity between assemblies of neurons. Recent models suggest that these assemblies contain both excitatory and inhibitory neurons (E/I assemblies), resulting in co-tuning and precise balance of excitation and inhibition. To understand computational consequences of E/I assemblies under biologically realistic constraints we built a spiking network model based on experimental data from telencephalic area Dp of adult zebrafish, a precisely balanced recurrent network homologous to piriform cortex. We found that E/I assemblies stabilized firing rate distributions compared to networks with excitatory assemblies and global inhibition. Unlike classical memory models, networks with E/I assemblies did not show discrete attractor dynamics. Rather, responses to learned inputs were locally constrained onto manifolds that ‘focused’ activity into neuronal subspaces. The covariance structure of these manifolds supported pattern classification when information was retrieved from selected neuronal subsets. Networks with E/I assemblies therefore transformed the geometry of neuronal coding space, resulting in continuous representations that reflected both relatedness of inputs and an individual’s experience. Such continuous representations enable fast pattern classification, can support continual learning, and may provide a basis for higher-order learning and cognitive computations.