Meta-Research: Releasing a preprint is associated with more attention and citations for the peer-reviewed article

  1. Darwin Y Fu
  2. Jacob J Hughey  Is a corresponding author
  1. Vanderbilt University Medical Center, United States

Abstract

Preprints in biology are becoming more popular, but only a small fraction of the articles published in peer-reviewed journals have previously been released as preprints. To examine whether releasing a preprint on bioRxiv was associated with the attention and citations received by the corresponding peer-reviewed article, we assembled a dataset of 74,239 articles, 5,405 of which had a preprint, published in 39 journals. Using log-linear regression and random-effects meta-analysis, we found that articles with a preprint had, on average, a 49% higher Altmetric Attention Score and 36% more citations than articles without a preprint. These associations were independent of several other article- and author-level variables (such as scientific subfield and number of authors), and were unrelated to journal-level variables such as access model and Impact Factor. This observational study can help researchers and publishers make informed decisions about how to incorporate preprints into their work.

Data availability

Code and data to reproduce this study are available on Figshare (https://doi.org/10.6084/m9.figshare.8855795). In accordance with Altmetric's data use agreement, the Figshare repository does not include each article's Altmetric data, which are available from Altmetric after obtaining an API key.

The following previously published data sets were used
    1. Abdill RJ
    2. Blekhman R
    (2019) Rxivist
    Docker Hub, blekhmanlab/rxivist_data:2019-08-30.

Article and author information

Author details

  1. Darwin Y Fu

    Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jacob J Hughey

    Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, United States
    For correspondence
    jakejhughey@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1558-6089

Funding

National Institute of General Medical Sciences (R35GM124685)

  • Jacob J Hughey

U.S. National Library of Medicine (T15LM007450)

  • Darwin Y Fu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Fu & Hughey

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,780
    views
  • 759
    downloads
  • 98
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Darwin Y Fu
  2. Jacob J Hughey
(2019)
Meta-Research: Releasing a preprint is associated with more attention and citations for the peer-reviewed article
eLife 8:e52646.
https://doi.org/10.7554/eLife.52646
  1. Further reading

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Xin Zhou, Zhinuo Jenny Wang ... Blanca Rodriguez
    Research Article

    Sudden death after myocardial infarction (MI) is associated with electrophysiological heterogeneities and ionic current remodelling. Low ejection fraction (EF) is used in risk stratification, but its mechanistic links with pro-arrhythmic heterogeneities are unknown. We aim to provide mechanistic explanations of clinical phenotypes in acute and chronic MI, from ionic current remodelling to ECG and EF, using human electromechanical modelling and simulation to augment experimental and clinical investigations. A human ventricular electromechanical modelling and simulation framework is constructed and validated with rich experimental and clinical datasets, incorporating varying degrees of ionic current remodelling as reported in literature. In acute MI, T-wave inversion and Brugada phenocopy were explained by conduction abnormality and local action potential prolongation in the border zone. In chronic MI, upright tall T-waves highlight large repolarisation dispersion between the border and remote zones, which promoted ectopic propagation at fast pacing. Post-MI EF at resting heart rate was not sensitive to the extent of repolarisation heterogeneity and the risk of repolarisation abnormalities at fast pacing. T-wave and QT abnormalities are better indicators of repolarisation heterogeneities than EF in post-MI.

    1. Computational and Systems Biology
    Alessandro Bitto
    Insight

    Measuring mitochondrial respiration in frozen tissue samples provides the first comprehensive atlas of how aging affects mitochondrial function in mice.