HIV restriction factor APOBEC3G binds in multiple steps and conformations to search and deaminate single-stranded DNA

  1. Michael Morse
  2. M Nabuan Naufer
  3. Yuqing Feng
  4. Linda Chelico
  5. Ioulia Rouzina
  6. Mark C Williams  Is a corresponding author
  1. Northeastern University, United States
  2. University of Saskatchewan, Canada
  3. Ohio State University, United States

Abstract

APOBEC3G (A3G), an enzyme expressed in primates with the potential to inhibit human immunodeficiency virus type 1 (HIV-1) infectivity, is a single-stranded DNA (ssDNA) deoxycytidine deaminase with two domains, a catalytically active, weakly ssDNA binding C-terminal domain (CTD) and a catalytically inactive, strongly ssDNA binding N-terminal domain (NTD). Using optical tweezers, we measure A3G binding a single, long ssDNA substrate under various applied forces to characterize the binding interaction. A3G binds ssDNA in multiple steps and in two distinct conformations, distinguished by degree of ssDNA contraction. A3G stabilizes formation of ssDNA loops, an ability inhibited by A3G oligomerization. Our data suggests A3G securely binds ssDNA through the NTD, while the CTD samples and potentially deaminates the substrate. Oligomerization of A3G stabilizes ssDNA binding but inhibits the CTD's search function. These processes explain A3G's ability to efficiently deaminate numerous sites across a 10,000 base viral genome during the reverse transcription process.

Data availability

Source data files have been supplied for figures 2, 2 supplement, 3, 4, and 5. Additionally, custom written Matlab and Lab windows code is supplied with this manuscript.

Article and author information

Author details

  1. Michael Morse

    Department of Physics, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8561-1833
  2. M Nabuan Naufer

    Department of Physics, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yuqing Feng

    Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Linda Chelico

    Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Ioulia Rouzina

    Department of Chemistry and Biochemistry, Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mark C Williams

    Department of Physics, Northeastern University, Boston, United States
    For correspondence
    ma.williams@northeastern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3219-376X

Funding

National Institute of General Medical Sciences (GM072462)

  • Michael Morse
  • Ioulia Rouzina
  • Mark C Williams

Canadian Institutes of Health Research (MOP137090)

  • Yuqing Feng
  • Linda Chelico

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Maria Spies, University of Iowa, United States

Version history

  1. Received: October 11, 2019
  2. Accepted: December 18, 2019
  3. Accepted Manuscript published: December 18, 2019 (version 1)
  4. Version of Record published: January 7, 2020 (version 2)

Copyright

© 2019, Morse et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,371
    views
  • 197
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael Morse
  2. M Nabuan Naufer
  3. Yuqing Feng
  4. Linda Chelico
  5. Ioulia Rouzina
  6. Mark C Williams
(2019)
HIV restriction factor APOBEC3G binds in multiple steps and conformations to search and deaminate single-stranded DNA
eLife 8:e52649.
https://doi.org/10.7554/eLife.52649

Share this article

https://doi.org/10.7554/eLife.52649

Further reading

    1. Structural Biology and Molecular Biophysics
    Nicholas James Ose, Paul Campitelli ... Sefika Banu Ozkan
    Research Article

    We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.

    1. Structural Biology and Molecular Biophysics
    Marco van den Noort, Panagiotis Drougkas ... Bert Poolman
    Research Article

    Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.