HIV restriction factor APOBEC3G binds in multiple steps and conformations to search and deaminate single-stranded DNA

  1. Michael Morse
  2. M Nabuan Naufer
  3. Yuqing Feng
  4. Linda Chelico
  5. Ioulia Rouzina
  6. Mark C Williams  Is a corresponding author
  1. Northeastern University, United States
  2. University of Saskatchewan, Canada
  3. Ohio State University, United States

Abstract

APOBEC3G (A3G), an enzyme expressed in primates with the potential to inhibit human immunodeficiency virus type 1 (HIV-1) infectivity, is a single-stranded DNA (ssDNA) deoxycytidine deaminase with two domains, a catalytically active, weakly ssDNA binding C-terminal domain (CTD) and a catalytically inactive, strongly ssDNA binding N-terminal domain (NTD). Using optical tweezers, we measure A3G binding a single, long ssDNA substrate under various applied forces to characterize the binding interaction. A3G binds ssDNA in multiple steps and in two distinct conformations, distinguished by degree of ssDNA contraction. A3G stabilizes formation of ssDNA loops, an ability inhibited by A3G oligomerization. Our data suggests A3G securely binds ssDNA through the NTD, while the CTD samples and potentially deaminates the substrate. Oligomerization of A3G stabilizes ssDNA binding but inhibits the CTD's search function. These processes explain A3G's ability to efficiently deaminate numerous sites across a 10,000 base viral genome during the reverse transcription process.

Data availability

Source data files have been supplied for figures 2, 2 supplement, 3, 4, and 5. Additionally, custom written Matlab and Lab windows code is supplied with this manuscript.

Article and author information

Author details

  1. Michael Morse

    Department of Physics, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8561-1833
  2. M Nabuan Naufer

    Department of Physics, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yuqing Feng

    Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Linda Chelico

    Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Ioulia Rouzina

    Department of Chemistry and Biochemistry, Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mark C Williams

    Department of Physics, Northeastern University, Boston, United States
    For correspondence
    ma.williams@northeastern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3219-376X

Funding

National Institute of General Medical Sciences (GM072462)

  • Michael Morse
  • Ioulia Rouzina
  • Mark C Williams

Canadian Institutes of Health Research (MOP137090)

  • Yuqing Feng
  • Linda Chelico

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Morse et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,444
    views
  • 201
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.52649

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Assmaa Elsheikh, Camden M Driggers ... Show-Ling Shyng
    Research Article

    Pancreatic KATP channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the KATP channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used KATP channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for KATP trafficking-impaired CHI is hindered by high affinity binding, which limits functional recovery of rescued channels. Recent structural studies of KATP channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known KATP pharmacochaperones bind. The structural knowledge provides a framework for discovering KATP channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on KATP channel trafficking mutations. Aekatperone reversibly inhibits KATP channel activity with a half-maximal inhibitory concentration (IC50) ~9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of KATP bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a KATP pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by KATP trafficking defects.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Andrew P Latham, Longchen Zhu ... Bin Zhang
    Research Article

    The phase separation of intrinsically disordered proteins is emerging as an important mechanism for cellular organization. However, efforts to connect protein sequences to the physical properties of condensates, that is, the molecular grammar, are hampered by a lack of effective approaches for probing high-resolution structural details. Using a combination of multiscale simulations and fluorescence lifetime imaging microscopy experiments, we systematically explored a series of systems consisting of diblock elastin-like polypeptides (ELPs). The simulations succeeded in reproducing the variation of condensate stability upon amino acid substitution and revealed different microenvironments within a single condensate, which we verified with environmentally sensitive fluorophores. The interspersion of hydrophilic and hydrophobic residues and a lack of secondary structure formation result in an interfacial environment, which explains both the strong correlation between ELP condensate stability and interfacial hydrophobicity scales, as well as the prevalence of protein-water hydrogen bonds. Our study uncovers new mechanisms for condensate stability and organization that may be broadly applicable.