Squalene-based adjuvants stimulate CD8 T cell, but not antibody responses, through a RIPK3-dependent pathway

  1. Eui Ho Kim
  2. Matthew C Woodruff
  3. Lilit Grigoryan
  4. Barbara Maier
  5. Song Hee Lee
  6. Pratushya Mandal
  7. Mario Cortese
  8. Muktha S Natrajan
  9. Rajesh Ravindran
  10. Huailiang Ma
  11. Miriam Merad
  12. Alexander D Gitlin
  13. Edward S Mocarski
  14. Joshy Jacob
  15. Bali Pulendran  Is a corresponding author
  1. Emory University, United States
  2. Stanford University, United States
  3. Icahn School of Medicine at Mount Sinai, United States
  4. Genentech, United States

Abstract

The squalene-based oil-in-water emulsion (SE) vaccine adjuvant MF59 has been administered to more than 100 million people in more than 30 countries, in both seasonal and pandemic influenza vaccines. Despite its wide use and efficacy, its mechanisms of action remains unclear. In this study we demonstrate that immunization of mice with MF59 or its mimetic AddaVax (AV) plus soluble antigen results in robust antigen-specific antibody and CD8 T cell responses in lymph nodes and non-lymphoid tissues. Immunization triggered rapid RIPK3-kinase dependent necroptosis in the lymph node which peaked at 6 hours, followed by a sequential wave of apoptosis. Immunization with alum plus antigen did not induce RIPK3 kinase-dependent signaling. RIPK3-dependent signaling induced by MF59 or AV was essential for cross-presentation of antigen to CD8 T cells by Batf3-dependent CD8+ DCs. Consistent with this, RIPK3-kinase deficient or Batf3 deficient mice were impaired in their ability to mount adjuvant-enhanced CD8 T cell responses. However, CD8 T cell responses were unaffected in mice deficient in MLKL, a downstream mediator of necroptosis. Surprisingly, antibody responses were unaffected in RIPK3-kinase or Batf3 deficient mice. In contrast, antibody responses were impaired by in vivo administration of the pan-caspase inhibitor Z-VAD-FMK, but normal in caspase-1 deficient mice, suggesting a contribution from apoptotic caspases, in the induction of antibody responses. These results demonstrate that squalene-based vaccine adjuvants induce antigen-specific CD8 T cell and antibody responses, through RIPK3-dependent and-independent pathways, respectively.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Eui Ho Kim

    Emory Vaccine Center, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthew C Woodruff

    Medicine, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lilit Grigoryan

    ITI, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Barbara Maier

    Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Song Hee Lee

    EVC, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Pratushya Mandal

    Microbiology and Immunology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Mario Cortese

    ITI, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Muktha S Natrajan

    Hope Clinic, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Rajesh Ravindran

    Yerkes, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Huailiang Ma

    ITI, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Miriam Merad

    Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Alexander D Gitlin

    Physiological Chemistry, Genentech, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Edward S Mocarski

    Department of Microbiology and Immunology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Joshy Jacob

    EVC, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Bali Pulendran

    ITI, Stanford University, Stanford, United States
    For correspondence
    bpulend@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6517-4333

Funding

National Institutes of Health (R37 DK057665)

  • Bali Pulendran

National Institutes of Health (R37 AI048638)

  • Bali Pulendran

National Institutes of Health (U19 AI057266)

  • Bali Pulendran

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John W Schoggins, University of Texas Southwestern Medical Center, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#2002593) of Emory University.

Version history

  1. Received: October 12, 2019
  2. Accepted: June 8, 2020
  3. Accepted Manuscript published: June 9, 2020 (version 1)
  4. Version of Record published: June 24, 2020 (version 2)
  5. Version of Record updated: January 11, 2021 (version 3)

Copyright

© 2020, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,349
    views
  • 982
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eui Ho Kim
  2. Matthew C Woodruff
  3. Lilit Grigoryan
  4. Barbara Maier
  5. Song Hee Lee
  6. Pratushya Mandal
  7. Mario Cortese
  8. Muktha S Natrajan
  9. Rajesh Ravindran
  10. Huailiang Ma
  11. Miriam Merad
  12. Alexander D Gitlin
  13. Edward S Mocarski
  14. Joshy Jacob
  15. Bali Pulendran
(2020)
Squalene-based adjuvants stimulate CD8 T cell, but not antibody responses, through a RIPK3-dependent pathway
eLife 9:e52687.
https://doi.org/10.7554/eLife.52687

Share this article

https://doi.org/10.7554/eLife.52687

Further reading

    1. Immunology and Inflammation
    2. Medicine
    Joanna C Porter, Jamie Inshaw ... Venizelos Papayannopoulos
    Research Article

    Background:

    Prinflammatory extracellular chromatin from neutrophil extracellular traps (NETs) and other cellular sources is found in COVID-19 patients and may promote pathology. We determined whether pulmonary administration of the endonuclease dornase alfa reduced systemic inflammation by clearing extracellular chromatin.

    Methods:

    Eligible patients were randomized (3:1) to the best available care including dexamethasone (R-BAC) or to BAC with twice-daily nebulized dornase alfa (R-BAC + DA) for seven days or until discharge. A 2:1 ratio of matched contemporary controls (CC-BAC) provided additional comparators. The primary endpoint was the improvement in C-reactive protein (CRP) over time, analyzed using a repeated-measures mixed model, adjusted for baseline factors.

    Results:

    We recruited 39 evaluable participants: 30 randomized to dornase alfa (R-BAC +DA), 9 randomized to BAC (R-BAC), and included 60 CC-BAC participants. Dornase alfa was well tolerated and reduced CRP by 33% compared to the combined BAC groups (T-BAC). Least squares (LS) mean post-dexamethasone CRP fell from 101.9 mg/L to 23.23 mg/L in R-BAC +DA participants versus a 99.5 mg/L to 34.82 mg/L reduction in the T-BAC group at 7 days; p=0.01. The anti-inflammatory effect of dornase alfa was further confirmed with subgroup and sensitivity analyses on randomised participants only, mitigating potential biases associated with the use of CC-BAC participants. Dornase alfa increased live discharge rates by 63% (HR 1.63, 95% CI 1.01–2.61, p=0.03), increased lymphocyte counts (LS mean: 1.08 vs 0.87, p=0.02) and reduced circulating cf-DNA and the coagulopathy marker D-dimer (LS mean: 570.78 vs 1656.96 μg/mL, p=0.004).

    Conclusions:

    Dornase alfa reduces pathogenic inflammation in COVID-19 pneumonia, demonstrating the benefit of cost-effective therapies that target extracellular chromatin.

    Funding:

    LifeArc, Breathing Matters, The Francis Crick Institute (CRUK, Medical Research Council, Wellcome Trust).

    Clinical trial number:

    NCT04359654.

    1. Immunology and Inflammation
    Hee Young Kim, Yeon Jun Kang ... Won-Woo Lee
    Research Article

    Trained immunity is the long-term functional reprogramming of innate immune cells, which results in altered responses toward a secondary challenge. Despite indoxyl sulfate (IS) being a potent stimulus associated with chronic kidney disease (CKD)-related inflammation, its impact on trained immunity has not been explored. Here, we demonstrate that IS induces trained immunity in monocytes via epigenetic and metabolic reprogramming, resulting in augmented cytokine production. Mechanistically, the aryl hydrocarbon receptor (AhR) contributes to IS-trained immunity by enhancing the expression of arachidonic acid (AA) metabolism-related genes such as arachidonate 5-lipoxygenase (ALOX5) and ALOX5 activating protein (ALOX5AP). Inhibition of AhR during IS training suppresses the induction of IS-trained immunity. Monocytes from end-stage renal disease (ESRD) patients have increased ALOX5 expression and after 6 days training, they exhibit enhanced TNF-α and IL-6 production to lipopolysaccharide (LPS). Furthermore, healthy control-derived monocytes trained with uremic sera from ESRD patients exhibit increased production of TNF-α and IL-6. Consistently, IS-trained mice and their splenic myeloid cells had increased production of TNF-α after in vivo and ex vivo LPS stimulation compared to that of control mice. These results provide insight into the role of IS in the induction of trained immunity, which is critical during inflammatory immune responses in CKD patients.