Squalene-based adjuvants stimulate CD8 T cell, but not antibody responses, through a RIPK3-dependent pathway

  1. Eui Ho Kim
  2. Matthew C Woodruff
  3. Lilit Grigoryan
  4. Barbara Maier
  5. Song Hee Lee
  6. Pratushya Mandal
  7. Mario Cortese
  8. Muktha S Natrajan
  9. Rajesh Ravindran
  10. Huailiang Ma
  11. Miriam Merad
  12. Alexander D Gitlin
  13. Edward S Mocarski
  14. Joshy Jacob
  15. Bali Pulendran  Is a corresponding author
  1. Emory University, United States
  2. Stanford University, United States
  3. Icahn School of Medicine at Mount Sinai, United States
  4. Genentech, United States

Abstract

The squalene-based oil-in-water emulsion (SE) vaccine adjuvant MF59 has been administered to more than 100 million people in more than 30 countries, in both seasonal and pandemic influenza vaccines. Despite its wide use and efficacy, its mechanisms of action remains unclear. In this study we demonstrate that immunization of mice with MF59 or its mimetic AddaVax (AV) plus soluble antigen results in robust antigen-specific antibody and CD8 T cell responses in lymph nodes and non-lymphoid tissues. Immunization triggered rapid RIPK3-kinase dependent necroptosis in the lymph node which peaked at 6 hours, followed by a sequential wave of apoptosis. Immunization with alum plus antigen did not induce RIPK3 kinase-dependent signaling. RIPK3-dependent signaling induced by MF59 or AV was essential for cross-presentation of antigen to CD8 T cells by Batf3-dependent CD8+ DCs. Consistent with this, RIPK3-kinase deficient or Batf3 deficient mice were impaired in their ability to mount adjuvant-enhanced CD8 T cell responses. However, CD8 T cell responses were unaffected in mice deficient in MLKL, a downstream mediator of necroptosis. Surprisingly, antibody responses were unaffected in RIPK3-kinase or Batf3 deficient mice. In contrast, antibody responses were impaired by in vivo administration of the pan-caspase inhibitor Z-VAD-FMK, but normal in caspase-1 deficient mice, suggesting a contribution from apoptotic caspases, in the induction of antibody responses. These results demonstrate that squalene-based vaccine adjuvants induce antigen-specific CD8 T cell and antibody responses, through RIPK3-dependent and-independent pathways, respectively.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Eui Ho Kim

    Emory Vaccine Center, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthew C Woodruff

    Medicine, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lilit Grigoryan

    ITI, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Barbara Maier

    Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Song Hee Lee

    EVC, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Pratushya Mandal

    Microbiology and Immunology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Mario Cortese

    ITI, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Muktha S Natrajan

    Hope Clinic, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Rajesh Ravindran

    Yerkes, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Huailiang Ma

    ITI, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Miriam Merad

    Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Alexander D Gitlin

    Physiological Chemistry, Genentech, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Edward S Mocarski

    Department of Microbiology and Immunology, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Joshy Jacob

    EVC, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Bali Pulendran

    ITI, Stanford University, Stanford, United States
    For correspondence
    bpulend@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6517-4333

Funding

National Institutes of Health (R37 DK057665)

  • Bali Pulendran

National Institutes of Health (R37 AI048638)

  • Bali Pulendran

National Institutes of Health (U19 AI057266)

  • Bali Pulendran

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John W Schoggins, University of Texas Southwestern Medical Center, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#2002593) of Emory University.

Version history

  1. Received: October 12, 2019
  2. Accepted: June 8, 2020
  3. Accepted Manuscript published: June 9, 2020 (version 1)
  4. Version of Record published: June 24, 2020 (version 2)
  5. Version of Record updated: January 11, 2021 (version 3)

Copyright

© 2020, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,091
    views
  • 958
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eui Ho Kim
  2. Matthew C Woodruff
  3. Lilit Grigoryan
  4. Barbara Maier
  5. Song Hee Lee
  6. Pratushya Mandal
  7. Mario Cortese
  8. Muktha S Natrajan
  9. Rajesh Ravindran
  10. Huailiang Ma
  11. Miriam Merad
  12. Alexander D Gitlin
  13. Edward S Mocarski
  14. Joshy Jacob
  15. Bali Pulendran
(2020)
Squalene-based adjuvants stimulate CD8 T cell, but not antibody responses, through a RIPK3-dependent pathway
eLife 9:e52687.
https://doi.org/10.7554/eLife.52687

Share this article

https://doi.org/10.7554/eLife.52687

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.

    1. Immunology and Inflammation
    Toyoshi Yanagihara, Kentaro Hata ... Isamu Okamoto
    Research Article

    Anticancer treatments can result in various adverse effects, including infections due to immune suppression/dysregulation and drug-induced toxicity in the lung. One of the major opportunistic infections is Pneumocystis jirovecii pneumonia (PCP), which can cause severe respiratory complications and high mortality rates. Cytotoxic drugs and immune-checkpoint inhibitors (ICIs) can induce interstitial lung diseases (ILDs). Nonetheless, the differentiation of these diseases can be difficult, and the pathogenic mechanisms of such diseases are not yet fully understood. To better comprehend the immunophenotypes, we conducted an exploratory mass cytometry analysis of immune cell subsets in bronchoalveolar lavage fluid from patients with PCP, cytotoxic drug-induced ILD (DI-ILD), and ICI-associated ILD (ICI-ILD) using two panels containing 64 markers. In PCP, we observed an expansion of the CD16+ T cell population, with the highest CD16+ T proportion in a fatal case. In ICI-ILD, we found an increase in CD57+ CD8+ T cells expressing immune checkpoints (TIGIT+ LAG3+ TIM-3+ PD-1+), FCRL5+ B cells, and CCR2+ CCR5+ CD14+ monocytes. These findings uncover the diverse immunophenotypes and possible pathomechanisms of cancer treatment-related pneumonitis.