Sphingosine 1-phosphate-regulated transcriptomes in heterogenous arterial and lymphatic endothelium of the aorta

  1. Eric Engelbrecht
  2. Michel V Levesque
  3. Liqun He
  4. Michael Vanlandewijck
  5. Anja Nitzsche
  6. Hira Niazi
  7. Andrew Kuo
  8. Sasha A Singh
  9. Masanori Aikawa
  10. Kristina Holton
  11. Richard L Proia
  12. Mari Kono
  13. William T Pu
  14. Eric Camerer
  15. Christer Betsholtz
  16. Timothy Hla  Is a corresponding author
  1. Harvard Medical School, United States
  2. Uppsala University, Sweden
  3. Université de Paris, INSERM U970, Paris Cardiovascular Research Center, France
  4. Brigham and Women's Hospital, Harvard Medical School, United States
  5. Harvard Medical School Research Computing, United States
  6. National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, United States
  7. Boston Children's Hospital, Harvard Medical School, United States

Abstract

Despite the medical importance of G protein-coupled receptors (GPCRs), in vivo cellular heterogeneity of GPCR signaling and downstream transcriptional responses are not understood. We report the comprehensive characterization of transcriptomes (bulk and single-cell) and chromatin domains regulated by sphingosine 1-phosphate receptor-1 (S1PR1) in adult mouse aortic endothelial cells. First, S1PR1 regulates NFkB and nuclear glucocorticoid receptor pathways to suppress inflammation-related mRNAs. Second, S1PR1 signaling in the heterogenous endothelial cell (EC) subtypes occurs at spatially-distinct areas of the aorta. For example, a transcriptomically distinct arterial EC population at vascular branch points (aEC1) exhibits ligand-independent S1PR1/β-arrestin coupling. In contrast, circulatory S1P-dependent S1PR1/β-arrestin coupling was observed in non-branch point aEC2 cells that exhibit an inflammatory gene expression signature. Moreover, S1P/S1PR1 signaling regulates the expression of lymphangiogenic and inflammation-related transcripts in an adventitial lymphatic EC (LEC) population in a ligand-dependent manner. These insights add resolution to existing concepts of GPCR signaling and S1P biology.

Data availability

Sequencing data and processed files have been deposited in GEO under the accession GSE139065.

The following data sets were generated

Article and author information

Author details

  1. Eric Engelbrecht

    Vascular Biology Program, Boston Children's Hospital and Department of Surgery Deapartment of Surgery, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  2. Michel V Levesque

    Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  3. Liqun He

    Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    No competing interests declared.
  4. Michael Vanlandewijck

    Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    No competing interests declared.
  5. Anja Nitzsche

    Université de Paris, INSERM U970, Paris Cardiovascular Research Center, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0567-6790
  6. Hira Niazi

    Université de Paris, INSERM U970, Paris Cardiovascular Research Center, Paris, France
    Competing interests
    No competing interests declared.
  7. Andrew Kuo

    Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  8. Sasha A Singh

    Center for Interdisciplinary Cardiovascular Sciences, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  9. Masanori Aikawa

    Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9275-2079
  10. Kristina Holton

    Harvard Medical School Research Computing, Boston, United States
    Competing interests
    No competing interests declared.
  11. Richard L Proia

    Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0456-1270
  12. Mari Kono

    Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2447-4350
  13. William T Pu

    Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4551-8079
  14. Eric Camerer

    Université de Paris, INSERM U970, Paris Cardiovascular Research Center, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6271-7125
  15. Christer Betsholtz

    Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    No competing interests declared.
  16. Timothy Hla

    Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, United States
    For correspondence
    timothy.hla@childrens.harvard.edu
    Competing interests
    Timothy Hla, received grant support from ONO Pharmaceuticals (2015-2018), has filed patent applications on ApoM, ApoM-Fc and HDL containing ApoM (US 62/545,629, PCT/US2018/000202, US 62/744,903, PCT/US2019/055831, US16/326,089, CA3034243, CN201780056922.6, JP 2019-530362, EPO 17851271.1), and has consulted for the following commercial entities: Astellas, Steptoe and Johnson, Gerson Lehrman Group Council, Janssen Research & Development, LLC, and Sun Pharma advanced research group (SPARC).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8355-4065

Funding

National Heart, Lung, and Blood Institute (R35 HL135821)

  • Timothy Hla

Fondation Leducq (SphingoNet Transatlantic Network Grant)

  • Richard L Proia
  • Eric Camerer
  • Christer Betsholtz
  • Timothy Hla

National Institute of Diabetes and Digestive and Kidney Diseases (Intramural program support)

  • Richard L Proia

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#16-10-3297) of the Boston Children's Hospital. All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,202
    views
  • 498
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eric Engelbrecht
  2. Michel V Levesque
  3. Liqun He
  4. Michael Vanlandewijck
  5. Anja Nitzsche
  6. Hira Niazi
  7. Andrew Kuo
  8. Sasha A Singh
  9. Masanori Aikawa
  10. Kristina Holton
  11. Richard L Proia
  12. Mari Kono
  13. William T Pu
  14. Eric Camerer
  15. Christer Betsholtz
  16. Timothy Hla
(2020)
Sphingosine 1-phosphate-regulated transcriptomes in heterogenous arterial and lymphatic endothelium of the aorta
eLife 9:e52690.
https://doi.org/10.7554/eLife.52690

Share this article

https://doi.org/10.7554/eLife.52690

Further reading

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Robyn D Moir, Emilio Merheb ... Ian M Willis
    Research Article

    Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ting-Wen Chen, Hsiao-Wei Liao ... Chung-Te Chang
    Research Article

    The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.