Phrenic-specific transcriptional programs shape respiratory motor output

  1. Alicia N Vagnozzi
  2. Kiran Garg
  3. Carola Dewitz
  4. Matthew T Moore
  5. Jared M Cregg
  6. Lucie Jeannotte
  7. Niccolò Zampieri
  8. Lynn T Landmesser
  9. Polyxeni Philippidou  Is a corresponding author
  1. Case Western Reserve University, United States
  2. Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Germany
  3. Centre de Recherche sur le Cancer de l'Université Laval, Canada

Abstract

The precise pattern of motor neuron (MN) activation is essential for the execution of motor actions; however, the molecular mechanisms that give rise to specific patterns of MN activity are largely unknown. Phrenic MNs integrate multiple inputs to mediate inspiratory activity during breathing and are constrained to fire in a pattern that drives efficient diaphragm contraction. We show that Hox5 transcription factors shape phrenic MN output by connecting phrenic MNs to inhibitory pre-motor neurons. Hox5 genes establish phrenic MN organization and dendritic topography through the regulation of phrenic-specific cell adhesion programs. In the absence of Hox5 genes, phrenic MN firing becomes asynchronous and erratic due to loss of phrenic MN inhibition. Strikingly, mice lacking Hox5 genes in MNs exhibit abnormal respiratory behavior throughout their lifetime. Our findings support a model where MN-intrinsic transcriptional programs shape the pattern of motor output by orchestrating distinct aspects of MN connectivity.

Data availability

Sequencing data have been deposited in GEO under accession code GSE138085

The following data sets were generated

Article and author information

Author details

  1. Alicia N Vagnozzi

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kiran Garg

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Carola Dewitz

    Diseases of the Nervous System, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Matthew T Moore

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jared M Cregg

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0027-9748
  6. Lucie Jeannotte

    Oncology, Centre de Recherche sur le Cancer de l'Université Laval, Québec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Niccolò Zampieri

    Diseases of the Nervous System, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2228-9453
  8. Lynn T Landmesser

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Polyxeni Philippidou

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    For correspondence
    pxp282@case.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0733-3591

Funding

National Institute of Neurological Disorders and Stroke (R00NS085037)

  • Polyxeni Philippidou

Mt Sinai Foundation

  • Polyxeni Philippidou

Eunice Kennedy Shriver National Institute of Child Health and Human Development (F30HD096788)

  • Alicia N Vagnozzi

National Institute of General Medical Sciences (T32GM007250)

  • Alicia N Vagnozzi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Anne E West, Duke University School of Medicine, United States

Ethics

Animal experimentation: All animal procedures performed in this study were in strict accordance with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Case Western Reserve University School of Medicine Institutional Animal Care and Use Committee (Animal Welfare Assurance Number A3145-01, protocol #: 2015-0180).

Version history

  1. Received: October 18, 2019
  2. Accepted: January 14, 2020
  3. Accepted Manuscript published: January 16, 2020 (version 1)
  4. Version of Record published: February 7, 2020 (version 2)

Copyright

© 2020, Vagnozzi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,742
    views
  • 231
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alicia N Vagnozzi
  2. Kiran Garg
  3. Carola Dewitz
  4. Matthew T Moore
  5. Jared M Cregg
  6. Lucie Jeannotte
  7. Niccolò Zampieri
  8. Lynn T Landmesser
  9. Polyxeni Philippidou
(2020)
Phrenic-specific transcriptional programs shape respiratory motor output
eLife 9:e52859.
https://doi.org/10.7554/eLife.52859

Share this article

https://doi.org/10.7554/eLife.52859

Further reading

    1. Neuroscience
    Mohsen Sadeghi, Reza Sharif Razavian ... Dagmar Sternad
    Research Article

    Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal’s control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject’s control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.

    1. Neuroscience
    Yiyi Chen, Laimdota Zizmare ... Christoph Trautwein
    Research Article

    The retina consumes massive amounts of energy, yet its metabolism and substrate exploitation remain poorly understood. Here, we used a murine explant model to manipulate retinal energy metabolism under entirely controlled conditions and utilised 1H-NMR spectroscopy-based metabolomics, in situ enzyme detection, and cell viability readouts to uncover the pathways of retinal energy production. Our experimental manipulations resulted in varying degrees of photoreceptor degeneration, while the inner retina and retinal pigment epithelium were essentially unaffected. This selective vulnerability of photoreceptors suggested very specific adaptations in their energy metabolism. Rod photoreceptors were found to rely strongly on oxidative phosphorylation, but only mildly on glycolysis. Conversely, cone photoreceptors were dependent on glycolysis but insensitive to electron transport chain decoupling. Importantly, photoreceptors appeared to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: (1) the mini-Krebs-cycle, fuelled by glutamine and branched chain amino acids, generating N-acetylaspartate; (2) the alanine-generating Cahill-cycle; (3) the lactate-releasing Cori-cycle. Moreover, the metabolomics data indicated a shuttling of taurine and hypotaurine between the retinal pigment epithelium and photoreceptors, likely resulting in an additional net transfer of reducing power to photoreceptors. These findings expand our understanding of retinal physiology and pathology and shed new light on neuronal energy homeostasis and the pathogenesis of neurodegenerative diseases.