1. Neuroscience
Download icon

Phrenic-specific transcriptional programs shape respiratory motor output

  1. Alicia N Vagnozzi
  2. Kiran Garg
  3. Carola Dewitz
  4. Matthew T Moore
  5. Jared M Cregg
  6. Lucie Jeannotte
  7. Niccolò Zampieri
  8. Lynn T Landmesser
  9. Polyxeni Philippidou  Is a corresponding author
  1. Case Western Reserve University, United States
  2. Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Germany
  3. Centre de Recherche sur le Cancer de l'Université Laval, Canada
Research Article
  • Cited 0
  • Views 1,029
  • Annotations
Cite this article as: eLife 2020;9:e52859 doi: 10.7554/eLife.52859

Abstract

The precise pattern of motor neuron (MN) activation is essential for the execution of motor actions; however, the molecular mechanisms that give rise to specific patterns of MN activity are largely unknown. Phrenic MNs integrate multiple inputs to mediate inspiratory activity during breathing and are constrained to fire in a pattern that drives efficient diaphragm contraction. We show that Hox5 transcription factors shape phrenic MN output by connecting phrenic MNs to inhibitory pre-motor neurons. Hox5 genes establish phrenic MN organization and dendritic topography through the regulation of phrenic-specific cell adhesion programs. In the absence of Hox5 genes, phrenic MN firing becomes asynchronous and erratic due to loss of phrenic MN inhibition. Strikingly, mice lacking Hox5 genes in MNs exhibit abnormal respiratory behavior throughout their lifetime. Our findings support a model where MN-intrinsic transcriptional programs shape the pattern of motor output by orchestrating distinct aspects of MN connectivity.

Data availability

Sequencing data have been deposited in GEO under accession code GSE138085

The following data sets were generated

Article and author information

Author details

  1. Alicia N Vagnozzi

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kiran Garg

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Carola Dewitz

    Diseases of the Nervous System, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Matthew T Moore

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jared M Cregg

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0027-9748
  6. Lucie Jeannotte

    Oncology, Centre de Recherche sur le Cancer de l'Université Laval, Québec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Niccolò Zampieri

    Diseases of the Nervous System, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2228-9453
  8. Lynn T Landmesser

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Polyxeni Philippidou

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    For correspondence
    pxp282@case.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0733-3591

Funding

National Institute of Neurological Disorders and Stroke (R00NS085037)

  • Polyxeni Philippidou

Mt Sinai Foundation

  • Polyxeni Philippidou

Eunice Kennedy Shriver National Institute of Child Health and Human Development (F30HD096788)

  • Alicia N Vagnozzi

National Institute of General Medical Sciences (T32GM007250)

  • Alicia N Vagnozzi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures performed in this study were in strict accordance with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Case Western Reserve University School of Medicine Institutional Animal Care and Use Committee (Animal Welfare Assurance Number A3145-01, protocol #: 2015-0180).

Reviewing Editor

  1. Anne E West, Duke University School of Medicine, United States

Publication history

  1. Received: October 18, 2019
  2. Accepted: January 14, 2020
  3. Accepted Manuscript published: January 16, 2020 (version 1)
  4. Version of Record published: February 7, 2020 (version 2)

Copyright

© 2020, Vagnozzi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,029
    Page views
  • 147
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Neuroscience
    Stefano Perni, Kurt Beam
    Research Article Updated

    Junctions between the endoplasmic reticulum and plasma membrane that are induced by the neuronal junctophilins are of demonstrated importance, but their molecular architecture is still poorly understood and challenging to address in neurons. This is due to the small size of the junctions and the multiple isoforms of candidate junctional proteins in different brain areas. Using colocalization of tagged proteins expressed in tsA201 cells, and electrophysiology, we compared the interactions of JPH3 and JPH4 with different calcium channels. We found that JPH3 and JPH4 caused junctional accumulation of all the tested high-voltage-activated CaV isoforms, but not a low-voltage-activated CaV. Also, JPH3 and JPH4 noticeably modify CaV2.1 and CaV2.2 inactivation rate. RyR3 moderately colocalized at junctions with JPH4, whereas RyR1 and RyR2 did not. By contrast, RyR1 and RyR3 strongly colocalized with JPH3, and RyR2 moderately. Likely contributing to this difference, JPH3 binds to cytoplasmic domain constructs of RyR1 and RyR3, but not of RyR2.

    1. Medicine
    2. Neuroscience
    Edoardo Bistaffa et al.
    Research Article

    Background: Fatal Familial Insomnia (FFI) is a genetic prion disease caused by the D178N mutation in the prion protein gene (PRNP) in coupling phase with methionine at PRNP 129. In 2017, we have shown that the olfactory mucosa (OM) collected from FFI patients contained traces of PrPSc detectable by Protein Misfolding Cyclic Amplification (PMCA).

    Methods In this work, we have challenged PMCA generated products obtained from OM and brain homogenate of FFI patients in BvPrP-Tg407 transgenic mice expressing the bank vole prion protein to test their ability to induce prion pathology.

    Results: All inoculated mice developed mild spongiform changes, astroglial activation and PrPSc deposition mainly affecting the thalamus. However, their neuropathological alterations were different from those found in the brain of BvPrP-Tg407 mice injected with raw FFI brain homogenate.

    Conclusions: Although with some experimental constraints, we show that PrPSc present in OM of FFI patients is potentially infectious.

    Funding: This work was supported in part by the Italian Ministry of Health (GR-2013-02355724 and Ricerca Corrente), MJFF, ALZ, Alzheimer's Research UK and the Weston Brain Institute (BAND2015), and Euronanomed III (Speedy) to FM; by the Spanish Ministerio de Economía y Competitividad [grant AGL2016-78054-R (AEI/FEDER, UE)] to J.M.T. and J.C.E.; A.M.-M. was supported by a fellowship from the INIA (FPI-SGIT-2015-02).