The functional organization of excitation and inhibition in the dendrites of mouse direction-selective ganglion cells

Abstract

Recent studies indicate that the precise timing and location of excitation and inhibition (E/I) within active dendritic trees can significantly impact neuronal function. How synaptic inputs are functionally organized at the subcellular level in intact circuits remains unclear. To address this issue, we took advantage of the retinal direction-selective ganglion cell circuit, where tuned inhibition is known to shape non-directional excitatory signals. We combined two-photon calcium imaging with genetic, pharmacological, and single-cell ablation methods to examine the extent to which inhibition 'vetoes' excitation at the level of individual dendrites of direction-selective ganglion cells. We demonstrate that inhibition accurately shapes direction selectivity independently within small dendritic segments (<10 μm) with remarkable accuracy. This suggests that the parallel processing schemes proposed for direction encoding could be more fine-grained than previously envisioned.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for all Figures

Article and author information

Author details

  1. Varsha Jain

    Department of Biology, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1620-4177
  2. Benjamin L Murphy-Baum

    Department of Biology, University of Victoria, Victoria, Canada
    For correspondence
    bmbaum@uvic.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6746-3091
  3. Geoff deRosenroll

    Department of Biology, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5431-2814
  4. Santhosh Sethuramanujam

    Department of Biology, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Mike Delsey

    Department of Biology, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Kerry Delaney

    Department of Biology, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Gautam Bhagwan Awatramani

    Department of Biology, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0610-5271

Funding

Canadian Institutes of Health Research (159444)

  • Gautam Bhagwan Awatramani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Markus Meister, California Institute of Technology, United States

Ethics

Animal experimentation: All procedures were performed in accordance with the Canadian Council on Animal Care and approved by the University of Victoria's Animal Care Committee (Protocol 2016 (15).

Version history

  1. Received: October 22, 2019
  2. Accepted: February 24, 2020
  3. Accepted Manuscript published: February 25, 2020 (version 1)
  4. Version of Record published: March 13, 2020 (version 2)

Copyright

© 2020, Jain et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,488
    views
  • 392
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Varsha Jain
  2. Benjamin L Murphy-Baum
  3. Geoff deRosenroll
  4. Santhosh Sethuramanujam
  5. Mike Delsey
  6. Kerry Delaney
  7. Gautam Bhagwan Awatramani
(2020)
The functional organization of excitation and inhibition in the dendrites of mouse direction-selective ganglion cells
eLife 9:e52949.
https://doi.org/10.7554/eLife.52949

Share this article

https://doi.org/10.7554/eLife.52949

Further reading

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.