The functional organization of excitation and inhibition in the dendrites of mouse direction-selective ganglion cells

Abstract

Recent studies indicate that the precise timing and location of excitation and inhibition (E/I) within active dendritic trees can significantly impact neuronal function. How synaptic inputs are functionally organized at the subcellular level in intact circuits remains unclear. To address this issue, we took advantage of the retinal direction-selective ganglion cell circuit, where tuned inhibition is known to shape non-directional excitatory signals. We combined two-photon calcium imaging with genetic, pharmacological, and single-cell ablation methods to examine the extent to which inhibition 'vetoes' excitation at the level of individual dendrites of direction-selective ganglion cells. We demonstrate that inhibition accurately shapes direction selectivity independently within small dendritic segments (<10 μm) with remarkable accuracy. This suggests that the parallel processing schemes proposed for direction encoding could be more fine-grained than previously envisioned.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for all Figures

Article and author information

Author details

  1. Varsha Jain

    Department of Biology, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1620-4177
  2. Benjamin L Murphy-Baum

    Department of Biology, University of Victoria, Victoria, Canada
    For correspondence
    bmbaum@uvic.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6746-3091
  3. Geoff deRosenroll

    Department of Biology, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5431-2814
  4. Santhosh Sethuramanujam

    Department of Biology, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Mike Delsey

    Department of Biology, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Kerry Delaney

    Department of Biology, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Gautam Bhagwan Awatramani

    Department of Biology, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0610-5271

Funding

Canadian Institutes of Health Research (159444)

  • Gautam Bhagwan Awatramani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed in accordance with the Canadian Council on Animal Care and approved by the University of Victoria's Animal Care Committee (Protocol 2016 (15).

Copyright

© 2020, Jain et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,572
    views
  • 395
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Varsha Jain
  2. Benjamin L Murphy-Baum
  3. Geoff deRosenroll
  4. Santhosh Sethuramanujam
  5. Mike Delsey
  6. Kerry Delaney
  7. Gautam Bhagwan Awatramani
(2020)
The functional organization of excitation and inhibition in the dendrites of mouse direction-selective ganglion cells
eLife 9:e52949.
https://doi.org/10.7554/eLife.52949

Share this article

https://doi.org/10.7554/eLife.52949

Further reading

    1. Neuroscience
    Nicolas Langer, Maurice Weber ... Ce Zhang
    Tools and Resources

    Memory deficits are a hallmark of many different neurological and psychiatric conditions. The Rey–Osterrieth complex figure (ROCF) is the state-of-the-art assessment tool for neuropsychologists across the globe to assess the degree of non-verbal visual memory deterioration. To obtain a score, a trained clinician inspects a patient’s ROCF drawing and quantifies deviations from the original figure. This manual procedure is time-consuming, slow and scores vary depending on the clinician’s experience, motivation, and tiredness. Here, we leverage novel deep learning architectures to automatize the rating of memory deficits. For this, we collected more than 20k hand-drawn ROCF drawings from patients with various neurological and psychiatric disorders as well as healthy participants. Unbiased ground truth ROCF scores were obtained from crowdsourced human intelligence. This dataset was used to train and evaluate a multihead convolutional neural network. The model performs highly unbiased as it yielded predictions very close to the ground truth and the error was similarly distributed around zero. The neural network outperforms both online raters and clinicians. The scoring system can reliably identify and accurately score individual figure elements in previously unseen ROCF drawings, which facilitates explainability of the AI-scoring system. To ensure generalizability and clinical utility, the model performance was successfully replicated in a large independent prospective validation study that was pre-registered prior to data collection. Our AI-powered scoring system provides healthcare institutions worldwide with a digital tool to assess objectively, reliably, and time-efficiently the performance in the ROCF test from hand-drawn images.

    1. Neuroscience
    Masahiro Takigawa, Marta Huelin Gorriz ... Daniel Bendor
    Research Article

    During rest and sleep, memory traces replay in the brain. The dialogue between brain regions during replay is thought to stabilize labile memory traces for long-term storage. However, because replay is an internally-driven, spontaneous phenomenon, it does not have a ground truth - an external reference that can validate whether a memory has truly been replayed. Instead, replay detection is based on the similarity between the sequential neural activity comprising the replay event and the corresponding template of neural activity generated during active locomotion. If the statistical likelihood of observing such a match by chance is sufficiently low, the candidate replay event is inferred to be replaying that specific memory. However, without the ability to evaluate whether replay detection methods are successfully detecting true events and correctly rejecting non-events, the evaluation and comparison of different replay methods is challenging. To circumvent this problem, we present a new framework for evaluating replay, tested using hippocampal neural recordings from rats exploring two novel linear tracks. Using this two-track paradigm, our framework selects replay events based on their temporal fidelity (sequence-based detection), and evaluates the detection performance using each event's track discriminability, where sequenceless decoding across both tracks is used to quantify whether the track replaying is also the most likely track being reactivated.