Mononuclear diploid cardiomyocytes support neonatal mouse heart regeneration in response to paracrine IGF2 signaling

  1. Hua Shen
  2. Peiheng Gan
  3. Kristy Wang
  4. Ali Darehzereshki
  5. Kai Wang
  6. S Ram Kumar
  7. Ching-Ling Lien
  8. Michaela Patterson
  9. Ge Tao
  10. Henry Sucov  Is a corresponding author
  1. University of Southern California, United States
  2. Medical University of South Carolina, United States
  3. Children's Hospital Los Angeles, United States
  4. First Affiliated Hospital of Guangzhou Medical University, China
  5. Medical College of Wisconsin, United States

Abstract

Injury to the newborn mouse heart is efficiently regenerated, but this capacity is lost by one week after birth. We found that IGF2, an important mitogen in heart development, is required for neonatal heart regeneration. IGF2 originates from the endocardium/endothelium and is transduced in cardiomyocytes by the insulin receptor. Following injury on postnatal day 1, absence of IGF2 abolished injury-induced cell cycle entry during the early part of the first postnatal week. Consequently, regeneration failed despite the later presence of additional cell cycle-inducing activities 7 days following injury. Most cardiomyocytes transition from mononuclear diploid to polyploid during the first postnatal week. Regeneration was rescued in Igf2-deficient neonates in three different contexts that elevate the percentage of mononuclear diploid cardiomyocytes beyond postnatal day 7. Thus, IGF2 is a paracrine-acting mitogen for heart regeneration during the early postnatal period, and IGF2-deficiency unmasks the dependence of this process on proliferation-competent mononuclear diploid cardiomyocytes.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Hua Shen

    Stem Cell Biology, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Peiheng Gan

    Regenerative Medicine, Medical University of South Carolina, Charleston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kristy Wang

    Regenerative Medicine, Medical University of South Carolina, Charleston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ali Darehzereshki

    Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kai Wang

    Cardiovascular Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. S Ram Kumar

    Surgery, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ching-Ling Lien

    Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5100-9780
  8. Michaela Patterson

    Cell Biology, Medical College of Wisconsin, Milwaukee, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3805-4181
  9. Ge Tao

    Regenerative Medicine, Medical University of South Carolina, Charleston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Henry Sucov

    Regenerative Medicine, Cardiology, Medical University of South Carolina, Charleston, United States
    For correspondence
    sucov@musc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3792-3795

Funding

National Institutes of Health (HL070123)

  • Henry Sucov

American Heart Association (17SDG33400141)

  • Ge Tao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Caroline E Burns, Boston Children's Hospital, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol 10173 of the University of Southern California and protocols 2018-00642 and 2018-00310 of the Medical University of South Carolina.

Version history

  1. Received: October 28, 2019
  2. Accepted: March 12, 2020
  3. Accepted Manuscript published: March 13, 2020 (version 1)
  4. Version of Record published: March 30, 2020 (version 2)

Copyright

© 2020, Shen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,295
    Page views
  • 335
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hua Shen
  2. Peiheng Gan
  3. Kristy Wang
  4. Ali Darehzereshki
  5. Kai Wang
  6. S Ram Kumar
  7. Ching-Ling Lien
  8. Michaela Patterson
  9. Ge Tao
  10. Henry Sucov
(2020)
Mononuclear diploid cardiomyocytes support neonatal mouse heart regeneration in response to paracrine IGF2 signaling
eLife 9:e53071.
https://doi.org/10.7554/eLife.53071

Share this article

https://doi.org/10.7554/eLife.53071

Further reading

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article Updated

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.

    1. Developmental Biology
    2. Neuroscience
    Smrithi Prem, Bharati Dev ... Emanuel DiCicco-Bloom
    Research Article Updated

    Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC-associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.