Defining the role of pulmonary endothelial cell heterogeneity in the response to acute lung injury

Abstract

Pulmonary endothelial cells (ECs) are an essential component of the gas exchange machinery of the lung alveolus. Despite this, the extent and function of lung EC heterogeneity remains incompletely understood. Using single-cell analytics, we identify multiple EC populations in the mouse lung, including macrovascular endothelium (maEC), microvascular endothelium (miECs), and a new population we have termed Car4-high ECs. Car4-high ECs express a unique gene signature, and ligand-receptor analysis indicates they are primed to receive reparative signals from alveolar type I cells. After acute lung injury, they are preferentially localized in regenerating regions of the alveolus. Influenza infection reveals the emergence of a population of highly proliferative ECs that likely arise from multiple miEC populations and contribute to alveolar revascularization after injury. These studies map EC heterogeneity in the adult lung and characterize the response of novel EC subpopulations required for tissue regeneration after acute lung injury.

Data availability

Single-cell RNA sequencing datasets have been deposited in GEO under accession code GSE128944.

The following data sets were generated

Article and author information

Author details

  1. Terren K Niethamer

    Department of Medicine, Department of Cell and Developmental Biology, Penn Center for Pulmonary Biology, Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  2. Collin T Stabler

    Department of Medicine, Department of Cell and Developmental Biology, Penn Center for Pulmonary Biology, Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  3. John P Leach

    Department of Medicine, Department of Cell and Developmental Biology, Penn Center for Pulmonary Biology, Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  4. Jarod A Zepp

    Department of Medicine, Department of Cell and Developmental Biology, Penn Center for Pulmonary Biology, Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  5. Michael P Morley

    Department of Medicine, Penn Center for Pulmonary Biology, Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  6. Apoorva Babu

    Department of Medicine, Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  7. Su Zhou

    Department of Medicine, Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  8. Edward E Morrisey

    Department of Medicine, Department of Cell and Developmental Biology, Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, United States
    For correspondence
    emorrise@pennmedicine.upenn.edu
    Competing interests
    Edward E Morrisey, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5785-1939

Funding

National Institutes of Health (R01-HL087825)

  • Edward E Morrisey

National Institutes of Health (U01-HL134745-01)

  • Edward E Morrisey

National Institutes of Health (R01-HL132999)

  • Edward E Morrisey

National Institutes of Health (R01-HL132349)

  • Edward E Morrisey

National Institutes of Health (T32-HL7586-34)

  • Terren K Niethamer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with the recommendations in the Guide for the Care and use of Laboratory Animals and under the oversight of the Institutional Animal Care and Use Committee (IACUC) of the University of Pennsylvania. All mouse experiments were approved by IACUC under protocol #806345.

Copyright

© 2020, Niethamer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,339
    views
  • 1,761
    downloads
  • 171
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Terren K Niethamer
  2. Collin T Stabler
  3. John P Leach
  4. Jarod A Zepp
  5. Michael P Morley
  6. Apoorva Babu
  7. Su Zhou
  8. Edward E Morrisey
(2020)
Defining the role of pulmonary endothelial cell heterogeneity in the response to acute lung injury
eLife 9:e53072.
https://doi.org/10.7554/eLife.53072

Share this article

https://doi.org/10.7554/eLife.53072

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Kara A Nelson, Kari F Lenhart ... Stephen DiNardo
    Research Article

    Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established. To address this, we investigated the formation of a genetically tractable niche, the Drosophila Posterior Signaling Center (PSC), the assembly of which had not been previously explored. This niche controls hematopoietic progenitors of the lymph gland (LG). PSC cells were previously shown to be specified laterally in the embryo, but ultimately reside dorsally, at the LG posterior. Here, using live-imaging, we show that PSC cells migrate as a tight collective and associate with multiple tissues during their trajectory to the LG posterior. We find that Slit emanating from two extrinsic sources, visceral mesoderm and cardioblasts, is required for the PSC to remain a collective, and for its attachment to cardioblasts during migration. Without proper Slit-Robo signaling, PSC cells disperse, form aberrant contacts, and ultimately fail to reach their stereotypical position near progenitors. Our work characterizes a novel example of niche formation and identifies an extrinsic signaling relay that controls precise niche positioning.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Paolo Petazzi, Telma Ventura ... Antonella Fidanza
    Tools and Resources

    A major challenge in the stem cell biology field is the ability to produce fully functional cells from induced pluripotent stem cells (iPSCs) that are a valuable resource for cell therapy, drug screening, and disease modelling. Here, we developed a novel inducible CRISPR-mediated activation strategy (iCRISPRa) to drive the expression of multiple endogenous transcription factors (TFs) important for in vitro cell fate and differentiation of iPSCs to haematopoietic progenitor cells. This work has identified a key role for IGFBP2 in developing haematopoietic progenitors. We first identified nine candidate TFs that we predicted to be involved in blood cell emergence during development, then generated tagged gRNAs directed to the transcriptional start site of these TFs that could also be detected during single-cell RNA sequencing (scRNAseq). iCRISPRa activation of these endogenous TFs resulted in a significant expansion of arterial-fated endothelial cells expressing high levels of IGFBP2, and our analysis indicated that IGFBP2 is involved in the remodelling of metabolic activity during in vitro endothelial to haematopoietic transition. As well as providing fundamental new insights into the mechanisms of haematopoietic differentiation, the broader applicability of iCRISPRa provides a valuable tool for studying dynamic processes in development and for recapitulating abnormal phenotypes characterised by ectopic activation of specific endogenous gene expression in a wide range of systems.