Keratin 14-dependent disulfides regulate epidermal homeostasis and barrier function via 14-3-3σ and YAP1

  1. Yajuan Guo
  2. Catherine J Redmond
  3. Krystynne A Leacock
  4. Margarita V Brovkina
  5. Suyun Ji
  6. Vinod Jaskula-Ranga
  7. Pierre A Coulombe  Is a corresponding author
  1. University of Michigan Medical School, United States
  2. Johns Hopkins University School of Medicine, United States

Abstract

The intermediate filament protein keratin 14 (K14) provides vital structural support in basal keratinocytes of epidermis. Recent studies evidenced a role for K14-dependent disulfide bonding in the organization and dynamics of keratin IFs in skin keratinocytes. Here we report that knock-in mice harboring a cysteine-to-alanine substitution at Krt14's codon 373 (C373A) exhibit alterations in disulfide-bonded K14 species and a barrier defect secondary to enhanced proliferation, faster transit time and altered differentiation in epidermis. A proteomics screen identified 14-3-3 as K14 interacting proteins. Follow-up studies showed that YAP1, a transcriptional effector of Hippo signaling regulated by 14-3-3sigma in skin keratinocytes, shows aberrant subcellular partitioning and function in differentiating Krt14 C373A keratinocytes. Residue C373 in K14, which is conserved in a subset of keratins, is revealed as a novel regulator of keratin organization and YAP function in early differentiating keratinocytes, with an impact on cell mechanics, homeostasis and barrier function in epidermis.

Data availability

ALL of the data generated or analyzed during this study are included in the manuscript and supporting files. The entire data set making up the submission to eLife has been deposited in BioXriv (BIORXIV/2019/824219).

Article and author information

Author details

  1. Yajuan Guo

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Catherine J Redmond

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Krystynne A Leacock

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Margarita V Brovkina

    Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Suyun Ji

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Vinod Jaskula-Ranga

    Department of Ophtalmology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Pierre A Coulombe

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    For correspondence
    coulombe@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0680-2373

Funding

National Institutes of Health (AR042047)

  • Pierre A Coulombe

National Institutes of Health (5T32CA009676)

  • Catherine J Redmond

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the University of Michigan. Every effort was made to minimize suffering.

Reviewing Editor

  1. Valerie Horsley, Yale University, United States

Version history

  1. Received: October 30, 2019
  2. Accepted: May 4, 2020
  3. Accepted Manuscript published: May 5, 2020 (version 1)
  4. Version of Record published: May 26, 2020 (version 2)

Copyright

© 2020, Guo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,153
    Page views
  • 504
    Downloads
  • 21
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yajuan Guo
  2. Catherine J Redmond
  3. Krystynne A Leacock
  4. Margarita V Brovkina
  5. Suyun Ji
  6. Vinod Jaskula-Ranga
  7. Pierre A Coulombe
(2020)
Keratin 14-dependent disulfides regulate epidermal homeostasis and barrier function via 14-3-3σ and YAP1
eLife 9:e53165.
https://doi.org/10.7554/eLife.53165

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Maria Körner, Susanne R Meyer ... Alexander Buchberger
    Research Article Updated

    The ATPase p97 (also known as VCP, Cdc48) has crucial functions in a variety of important cellular processes such as protein quality control, organellar homeostasis, and DNA damage repair, and its de-regulation is linked to neuromuscular diseases and cancer. p97 is tightly controlled by numerous regulatory cofactors, but the full range and function of the p97–cofactor network is unknown. Here, we identify the hitherto uncharacterized FAM104 proteins as a conserved family of p97 interactors. The two human family members VCP nuclear cofactor family member 1 and 2 (VCF1/2) bind p97 directly via a novel, alpha-helical motif and associate with p97-UFD1-NPL4 and p97-UBXN2B complexes in cells. VCF1/2 localize to the nucleus and promote the nuclear import of p97. Loss of VCF1/2 results in reduced nuclear p97 levels, slow growth, and hypersensitivity to chemical inhibition of p97 in the absence and presence of DNA damage, suggesting that FAM104 proteins are critical regulators of nuclear p97 functions.

    1. Cell Biology
    2. Neuroscience
    Elisabeth Jongsma, Anita Goyala ... Collin Yvès Ewald
    Research Article Updated

    The amyloid beta (Aβ) plaques found in Alzheimer’s disease (AD) patients’ brains contain collagens and are embedded extracellularly. Several collagens have been proposed to influence Aβ aggregate formation, yet their role in clearance is unknown. To investigate the potential role of collagens in forming and clearance of extracellular aggregates in vivo, we created a transgenic Caenorhabditis elegans strain that expresses and secretes human Aβ1-42. This secreted Aβ forms aggregates in two distinct places within the extracellular matrix. In a screen for extracellular human Aβ aggregation regulators, we identified different collagens to ameliorate or potentiate Aβ aggregation. We show that a disintegrin and metalloprotease a disintegrin and metalloprotease 2 (ADM-2), an ortholog of ADAM9, reduces the load of extracellular Aβ aggregates. ADM-2 is required and sufficient to remove the extracellular Aβ aggregates. Thus, we provide in vivo evidence of collagens essential for aggregate formation and metalloprotease participating in extracellular Aβ aggregate removal.