Previously undetected super-spreading of Mycobacterium tuberculosis revealed by deep sequencing

  1. Robyn S Lee  Is a corresponding author
  2. Jean-François Proulx
  3. Fiona McIntosh
  4. Marcel A Behr
  5. William P Hanage
  1. University of Toronto, Canada
  2. Nunavik Regional Board of Health and Social Services, Canada
  3. The Research Institute of McGill University Health Centre, Canada
  4. Harvard TH Chan School of Public Health, United States

Abstract

Tuberculosis disproportionately affects the Canadian Inuit. To address this, it is imperative we understand transmission dynamics in this population. We investigate whether 'deep' sequencing can provide additional resolution compared to standard sequencing, using a well-characterized outbreak from the Arctic (2011-2012, 50 cases). Samples were sequenced to ~500-1000x and reads were aligned to a novel local reference genome generated with PacBio SMRT sequencing. Consensus and heterogeneous variants were identified and compared across genomes. In contrast with previous genomic analyses using ~50x depth, deep sequencing allowed us to identify a novel super-spreader who likely transmitted to up to 17 other cases during the outbreak (35% of all cases that year). It is increasingly evident that within-host diversity should be incorporated into transmission analyses; deep sequencing may facilitate more accurate detection of super-spreaders and transmission clusters. This has implications not only for TB, but all genomic studies of transmission - regardless of pathogen.

Data availability

Sequencing data and the assembly for MT-0080 are available on the NCBI's Sequence Read Archive under BioProject PRJNA549270.

The following data sets were generated

Article and author information

Author details

  1. Robyn S Lee

    Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
    For correspondence
    robyn.s.c.lee@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7120-9053
  2. Jean-François Proulx

    Nunavik Regional Board of Health and Social Services, Kuujjuaq, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Fiona McIntosh

    The Research Institute of McGill University Health Centre, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Marcel A Behr

    The Research Institute of McGill University Health Centre, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. William P Hanage

    Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R01AI128344)

  • William P Hanage

Canadian Institutes of Health Research (Fellowship 152448)

  • Robyn S Lee

Canadian Institutes of Health Research (Foundation Award 148362)

  • Marcel A Behr

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Miles P Davenport, University of New South Wales, Australia

Ethics

Human subjects: Ethics approval was obtained from the Institutional Review Board (IRB) of the Harvard T.H. Chan School of Public Health (IRB18-0552) and the IRB of McGill University Faculty of Medicine (IRB A02-M08-18A). Clinical and epidemiological data were previously collected as part of the routine public health response and all data was analyzed in non-nominal fashion, using unique identifiers, therefore individual patient consent was not required. This study was done in collaboration with the Nunavik Regional Board of Health and Social Services.

Version history

  1. Received: November 1, 2019
  2. Accepted: January 19, 2020
  3. Accepted Manuscript published: February 4, 2020 (version 1)
  4. Version of Record published: February 11, 2020 (version 2)

Copyright

© 2020, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,684
    views
  • 400
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Robyn S Lee
  2. Jean-François Proulx
  3. Fiona McIntosh
  4. Marcel A Behr
  5. William P Hanage
(2020)
Previously undetected super-spreading of Mycobacterium tuberculosis revealed by deep sequencing
eLife 9:e53245.
https://doi.org/10.7554/eLife.53245

Share this article

https://doi.org/10.7554/eLife.53245

Further reading

    1. Epidemiology and Global Health
    Yuchen Zhang, Yitang Sun ... Kaixiong Ye
    Research Article

    Background:

    Circulating omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) have been associated with various chronic diseases and mortality, but results are conflicting. Few studies examined the role of omega-6/omega-3 ratio in mortality.

    Methods:

    We investigated plasma omega-3 and omega-6 PUFAs and their ratio in relation to all-cause and cause-specific mortality in a large prospective cohort, the UK Biobank. Of 85,425 participants who had complete information on circulating PUFAs, 6461 died during follow-up, including 2794 from cancer and 1668 from cardiovascular disease (CVD). Associations were estimated by multivariable Cox proportional hazards regression with adjustment for relevant risk factors.

    Results:

    Risk for all three mortality outcomes increased as the ratio of omega-6/omega-3 PUFAs increased (all Ptrend <0.05). Comparing the highest to the lowest quintiles, individuals had 26% (95% CI, 15–38%) higher total mortality, 14% (95% CI, 0–31%) higher cancer mortality, and 31% (95% CI, 10–55%) higher CVD mortality. Moreover, omega-3 and omega-6 PUFAs in plasma were all inversely associated with all-cause, cancer, and CVD mortality, with omega-3 showing stronger effects.

    Conclusions:

    Using a population-based cohort in UK Biobank, our study revealed a strong association between the ratio of circulating omega-6/omega-3 PUFAs and the risk of all-cause, cancer, and CVD mortality.

    Funding:

    Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institute of Health under the award number R35GM143060 (KY). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

    1. Ecology
    2. Epidemiology and Global Health
    Aleksandra Kovacevic, David RM Smith ... Lulla Opatowski
    Research Article

    Non-pharmaceutical interventions implemented to block SARS-CoV-2 transmission in early 2020 led to global reductions in the incidence of invasive pneumococcal disease (IPD). By contrast, most European countries reported an increase in antibiotic resistance among invasive Streptococcus pneumoniae isolates from 2019 to 2020, while an increasing number of studies reported stable pneumococcal carriage prevalence over the same period. To disentangle the impacts of the COVID-19 pandemic on pneumococcal epidemiology in the community setting, we propose a mathematical model formalizing simultaneous transmission of SARS-CoV-2 and antibiotic-sensitive and -resistant strains of S. pneumoniae. To test hypotheses underlying these trends five mechanisms were built into the model and examined: (1) a population-wide reduction of antibiotic prescriptions in the community, (2) lockdown effect on pneumococcal transmission, (3) a reduced risk of developing an IPD due to the absence of common respiratory viruses, (4) community azithromycin use in COVID-19 infected individuals, (5) and a longer carriage duration of antibiotic-resistant pneumococcal strains. Among 31 possible pandemic scenarios involving mechanisms individually or in combination, model simulations surprisingly identified only two scenarios that reproduced the reported trends in the general population. They included factors (1), (3), and (4). These scenarios replicated a nearly 50% reduction in annual IPD, and an increase in antibiotic resistance from 20% to 22%, all while maintaining a relatively stable pneumococcal carriage. Exploring further, higher SARS-CoV-2 R0 values and synergistic within-host virus-bacteria interaction mechanisms could have additionally contributed to the observed antibiotic resistance increase. Our work demonstrates the utility of the mathematical modeling approach in unraveling the complex effects of the COVID-19 pandemic responses on AMR dynamics.