Helix breaking transition in the S4 of HCN channel is critical for hyperpolarization-dependent gating

  1. Marina A Kasimova
  2. Debanjan Tewari
  3. John B Cowgill
  4. Willy Carrasquel Ursuleaz
  5. Jenna L Lin
  6. Lucie Delemotte  Is a corresponding author
  7. Baron Chanda  Is a corresponding author
  1. KTH Royal Institute of Technology, Sweden
  2. University of Wisconsin-Madison, United States

Abstract

In contrast to most voltage-gated ion channels, hyperpolarization- and cAMP gated (HCN) ion channels open on hyperpolarization. Structure-function studies show that the voltage-sensor of HCN channels are unique but the mechanisms that determine gating polarity remain poorly understood. All-atom molecular dynamics simulations (~20 ms) of HCN1 channel under hyperpolarization reveals an initial downward movement of the S4 voltage-sensor but following the transfer of last gating charge, the S4 breaks into two sub-helices with the lower sub-helix becoming parallel to the membrane. Functional studies on bipolar channels show that the gating polarity strongly correlates with helical turn propensity of the substituents at the breakpoint. Remarkably, in a proto-HCN background, the replacement of breakpoint serine with a bulky hydrophobic amino acid is sufficient to completely flip the gating polarity from inward to outward-rectifying. Our studies reveal an unexpected mechanism of inward rectification involving a linker sub-helix emerging from HCN S4 during hyperpolarization.

Data availability

Simulations were carried out at the Pittsburg Supercomputing center which is funded by NIGMS. Data is available at: https://psc.edu/anton-project-summaries

Article and author information

Author details

  1. Marina A Kasimova

    Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7497-9448
  2. Debanjan Tewari

    Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  3. John B Cowgill

    Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7968-8359
  4. Willy Carrasquel Ursuleaz

    Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  5. Jenna L Lin

    Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  6. Lucie Delemotte

    Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
    For correspondence
    lucie.delemotte@scilifelab.se
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0828-3899
  7. Baron Chanda

    Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
    For correspondence
    chanda@wisc.edu
    Competing interests
    Baron Chanda, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4954-7034

Funding

National Institute of Neurological Disorders and Stroke (NS101723)

  • Baron Chanda

National Heart, Lung, and Blood Institute (HL-07936-18)

  • John B Cowgill

National Institute of General Medical Sciences (GM008293)

  • Jenna L Lin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard W Aldrich, The University of Texas at Austin, United States

Publication history

  1. Received: November 7, 2019
  2. Accepted: November 19, 2019
  3. Accepted Manuscript published: November 27, 2019 (version 1)
  4. Version of Record published: December 10, 2019 (version 2)

Copyright

© 2019, Kasimova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,764
    Page views
  • 442
    Downloads
  • 28
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marina A Kasimova
  2. Debanjan Tewari
  3. John B Cowgill
  4. Willy Carrasquel Ursuleaz
  5. Jenna L Lin
  6. Lucie Delemotte
  7. Baron Chanda
(2019)
Helix breaking transition in the S4 of HCN channel is critical for hyperpolarization-dependent gating
eLife 8:e53400.
https://doi.org/10.7554/eLife.53400
  1. Further reading

Further reading

    1. Structural Biology and Molecular Biophysics
    Xingchen Liu et al.
    Research Article

    Clamp loaders place circular sliding clamp proteins onto DNA so that clamp-binding partner proteins can synthesize, scan, and repair the genome. DNA with nicks or small single-stranded gaps are common clamp-loading targets in DNA repair, yet these substrates would be sterically blocked given the known mechanism for binding of primer-template DNA. Here, we report the discovery of a second DNA binding site in the yeast clamp loader Replication Factor C (RFC) that aids in binding to nicked or gapped DNA. This DNA binding site is on the external surface and is only accessible in the open conformation of RFC. Initial DNA binding at this site thus provides access to the primary DNA binding site in the central chamber. Furthermore, we identify that this site can partially unwind DNA to create an extended single-stranded gap for DNA binding in RFC's central chamber and subsequent ATPase activation. Finally, we show that deletion of the BRCT domain, a major component of the external DNA binding site, results in defective yeast growth in the presence of DNA damage where nicked or gapped DNA intermediates occur. We propose that RFC’s external DNA binding site acts to enhance DNA binding and clamp loading, particularly at DNA architectures typically found in DNA repair.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Vladislav Belyy et al.
    Research Article

    Protein folding homeostasis in the endoplasmic reticulum (ER) is regulated by a signaling network, termed the unfolded protein response (UPR). Inositol-requiring enzyme 1 (IRE1) is an ER membrane-resident kinase/RNase that mediates signal transmission in the most evolutionarily conserved branch of the UPR. Dimerization and/or higher-order oligomerization of IRE1 are thought to be important for its activation mechanism, yet the actual oligomeric states of inactive, active, and attenuated mammalian IRE1 complexes remain unknown. We developed an automated two-color single-molecule tracking approach to dissect the oligomerization of tagged endogenous human IRE1 in live cells. In contrast to previous models, our data indicate that IRE1 exists as a constitutive homodimer at baseline and assembles into small oligomers upon ER stress. We demonstrate that the formation of inactive dimers and stress-dependent oligomers is fully governed by IRE1’s lumenal domain. Phosphorylation of IRE1’s kinase domain occurs more slowly than oligomerization and is retained after oligomers disassemble back into dimers. Our findings suggest that assembly of IRE1 dimers into larger oligomers specifically enables trans-autophosphorylation, which in turn drives IRE1’s RNase activity.