Zebrafish macrophage developmental arrest underlies depletion of microglia and reveals Csf1r-independent metaphocytes

  1. Laura E Kuil
  2. Nynke Oosterhof
  3. Guliano Ferrero
  4. Tereza Mikulášová
  5. Martina Hason
  6. Jordy Dekker
  7. Mireia Rovira
  8. Herma C van der Linde
  9. Paulina MH van Strien
  10. Emma de Pater
  11. Gerben Schaaf
  12. Erik MJ Bindels
  13. Valerie Wittamer  Is a corresponding author
  14. Tjakko J van Ham  Is a corresponding author
  1. University Medical Center Rotterdam, Netherlands
  2. Université Libre de Bruxelles, Belgium
  3. Institute of Molecular Genetics of the ASCR, Czech Republic

Abstract

Macrophages derive from multiple sources of hematopoietic progenitors. Most macrophages require colony-stimulating factor 1 receptor (CSF1R), but some macrophages persist in the absence of CSF1R. Here, we analyzed mpeg1:GFP–expressing macrophages in csf1r-deficient zebrafish and report that embryonic macrophages emerge followed by their developmental arrest. In larvae, mpeg1+ cell numbers then increased showing two distinct types in the skin: branched, putative Langerhans cells, and amoeboid cells. In contrast, although numbers also increased in csf1r-mutants, exclusively amoeboid mpeg1+ cells were present, which we showed by genetic lineage tracing to have a non-hematopoietic origin. They expressed macrophage-associated genes, but also showed decreased phagocytic gene expression and increased epithelial-associated gene expression, characteristic of metaphocytes, recently discovered ectoderm-derived cells. We further demonstrated that juvenile csf1r-deficient zebrafish exhibit systemic macrophage depletion. Thus, Csf1r deficiency disrupts embryonic to adult macrophage development. Csf1r-deficient zebrafish are viable and permit analyzing the consequences of macrophage loss throughout life.

Data availability

The data discussed in this publication have been deposited in NCBI's Gene Expression Omnibus (Edgar et al., 2002) and are accessible through GEO Series accession number GSE149789

The following data sets were generated

Article and author information

Author details

  1. Laura E Kuil

    Clinical Genetics, University Medical Center Rotterdam, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Nynke Oosterhof

    Clinical Genetics, University Medical Center Rotterdam, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Guliano Ferrero

    IRIBHM, Université Libre de Bruxelles, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Tereza Mikulášová

    Laboratory of Cell Differentiation, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Martina Hason

    Laboratory of Cell Differentiation, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  6. Jordy Dekker

    Clinical Genetics, University Medical Center Rotterdam, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Mireia Rovira

    IRIBHM, Université Libre de Bruxelles, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  8. Herma C van der Linde

    Clinical Genetics, University Medical Center Rotterdam, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Paulina MH van Strien

    Hematology, University Medical Center Rotterdam, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  10. Emma de Pater

    Hematology, University Medical Center Rotterdam, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  11. Gerben Schaaf

    Clinical Genetics, University Medical Center Rotterdam, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0189-9073
  12. Erik MJ Bindels

    Hematology, University Medical Center Rotterdam, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  13. Valerie Wittamer

    IRIBHM, Université Libre de Bruxelles, Brussels, Belgium
    For correspondence
    vwittame@ulb.ac.be
    Competing interests
    The authors declare that no competing interests exist.
  14. Tjakko J van Ham

    Clinical Genetics, University Medical Center Rotterdam, Rotterdam, Netherlands
    For correspondence
    t.vanham@erasmusmc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2175-8713

Funding

Erasmus University Fellowship

  • Tjakko J van Ham

WELBIO (WELBIO-CR-2015S-04)

  • Valerie Wittamer

Marie Curie (322368)

  • Tjakko J van Ham

ZonMw (VENI 016.136.150)

  • Tjakko J van Ham

Fonds de la Recherche Scientifique FNRS under Incentive Grant for Scientific Research (F451218F)

  • Valerie Wittamer

Czech Science Foundation (18-18363S)

  • Tereza Mikulášová

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were approved and in accordance with the recommendations of the Animal Experimentation Committee at Erasmus MC, Rotterdam or the ULB ethical committee for animal welfare (CEBEA) (protocol 594N). Zebrafish over 5 days old were euthanized using ice water and/or high dose MS-222.

Copyright

© 2020, Kuil et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,824
    views
  • 682
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura E Kuil
  2. Nynke Oosterhof
  3. Guliano Ferrero
  4. Tereza Mikulášová
  5. Martina Hason
  6. Jordy Dekker
  7. Mireia Rovira
  8. Herma C van der Linde
  9. Paulina MH van Strien
  10. Emma de Pater
  11. Gerben Schaaf
  12. Erik MJ Bindels
  13. Valerie Wittamer
  14. Tjakko J van Ham
(2020)
Zebrafish macrophage developmental arrest underlies depletion of microglia and reveals Csf1r-independent metaphocytes
eLife 9:e53403.
https://doi.org/10.7554/eLife.53403

Share this article

https://doi.org/10.7554/eLife.53403

Further reading

    1. Developmental Biology
    Hanee Lee, Junsu Kang ... Junho Lee
    Research Article

    The evolutionarily conserved Hippo (Hpo) pathway has been shown to impact early development and tumorigenesis by governing cell proliferation and apoptosis. However, its post-developmental roles are relatively unexplored. Here, we demonstrate its roles in post-mitotic cells by showing that defective Hpo signaling accelerates age-associated structural and functional decline of neurons in Caenorhabditis elegans. Loss of wts-1/LATS, the core kinase of the Hpo pathway, resulted in premature deformation of touch neurons and impaired touch responses in a yap-1/YAP-dependent manner, the downstream transcriptional co-activator of LATS. Decreased movement as well as microtubule destabilization by treatment with colchicine or disruption of microtubule-stabilizing genes alleviated the neuronal deformation of wts-1 mutants. Colchicine exerted neuroprotective effects even during normal aging. In addition, the deficiency of a microtubule-severing enzyme spas-1 also led to precocious structural deformation. These results consistently suggest that hyper-stabilized microtubules in both wts-1-deficient neurons and normally aged neurons are detrimental to the maintenance of neuronal structural integrity. In summary, Hpo pathway governs the structural and functional maintenance of differentiated neurons by modulating microtubule stability, raising the possibility that the microtubule stability of fully developed neurons could be a promising target to delay neuronal aging. Our study provides potential therapeutic approaches to combat age- or disease-related neurodegeneration.

    1. Developmental Biology
    Bin Zhu, Rui Wei ... Pei Liang
    Research Article

    Wing dimorphism is a common phenomenon that plays key roles in the environmental adaptation of aphid; however, the signal transduction in response to environmental cues and the regulation mechanism related to this event remain unknown. Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification that extends transcriptome variety without altering the genome, playing essential roles in numerous biological and physiological processes. Here, we present a chromosome-level genome assembly of the rose-grain aphid Metopolophium dirhodum by using PacBio long HiFi reads and Hi-C technology. The final genome assembly for M. dirhodum is 447.8 Mb, with 98.50% of the assembled sequences anchored to nine chromosomes. The contig and scaffold N50 values are 7.82 and 37.54 Mb, respectively. A total of 18,003 protein-coding genes were predicted, of which 92.05% were functionally annotated. In addition, 11,678 A-to-I RNA-editing sites were systematically identified based on this assembled M. dirhodum genome, and two synonymous A-to-I RNA-editing sites on CYP18A1 were closely associated with transgenerational wing dimorphism induced by crowding. One of these A-to-I RNA-editing sites may prevent the binding of miR-3036-5p to CYP18A1, thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring. Meanwhile, crowding can also inhibit miR-3036-5p expression and further increase CYP18A1 abundance, resulting in winged offspring. These findings support that A-to-I RNA editing is a dynamic mechanism in the regulation of transgenerational wing dimorphism in aphids and would advance our understanding of the roles of RNA editing in environmental adaptability and phenotypic plasticity.