Complexity of frequency receptive fields predicts tonotopic variability across species

Abstract

Primary cortical areas contain maps of sensory features, including sound frequency in primary auditory cortex (A1). Two-photon calcium imaging in mice has confirmed the presence of these global tonotopic maps, while uncovering an unexpected local variability in the stimulus preferences of individual neurons in A1 and other primary regions. Here we show that local heterogeneity of frequency preferences is not unique to rodents. Using two-photon calcium imaging in layers 2/3, we found that local variance in frequency preferences is equivalent in ferrets and mice. Neurons with multipeaked frequency tuning are less spatially organized than those tuned to a single frequency in both species. Furthermore, we show that microelectrode recordings may describe a smoother tonotopic arrangement due to a sampling bias towards neurons with simple frequency tuning. These results help explain previous inconsistencies in cortical topography across species and recording techniques.

Data availability

We have provided our data and Matlab scripts for generating our figures on Dryad: https://doi.org/10.5061/dryad.9ghx3ffd9.

The following data sets were generated

Article and author information

Author details

  1. Quentin Gaucher

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  2. Mariangela Panniello

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  3. Aleksandar Z Ivanov

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Johannes C Dahmen

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9889-8303
  5. Andrew J King

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    Andrew J King, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5180-7179
  6. Kerry M M Walker

    Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
    For correspondence
    kerry.walker@dpag.ox.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1043-5302

Funding

Biotechnology and Biological Sciences Research Council (BB/M010929/1)

  • Kerry M M Walker

University Of Oxford (DPAG Early Career Fellowship)

  • Kerry M M Walker

Wellcome (WT076508AIA)

  • Andrew J King

Wellcome (WT108369/Z/2015/Z)

  • Andrew J King

University Of Oxford (Christopher Welch Scholarship)

  • Aleksandar Z Ivanov

University Of Oxford (Newton-Abraham Scholarship)

  • Mariangela Panniello

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The animal procedures were approved by the University of Oxford Committee on Animal Care and Ethical Review and were carried out under license from the UK Home Office, in accordance with the Animals (Scientific Procedures) Act 1986 and in line with the 3Rs. Project licence PPL 30/3181 and PIL l23DD2122.

Copyright

© 2020, Gaucher et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,162
    views
  • 269
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Quentin Gaucher
  2. Mariangela Panniello
  3. Aleksandar Z Ivanov
  4. Johannes C Dahmen
  5. Andrew J King
  6. Kerry M M Walker
(2020)
Complexity of frequency receptive fields predicts tonotopic variability across species
eLife 9:e53462.
https://doi.org/10.7554/eLife.53462

Share this article

https://doi.org/10.7554/eLife.53462

Further reading

    1. Neuroscience
    Sudhanvan Iyer, Kathryn Maxson Jones ... Mary A Majumder
    Review Article

    In this paper, we provide an overview and analysis of the BRAIN Initiative data-sharing ecosystem. First, we compare and contrast the characteristics of the seven BRAIN Initiative data archives germane to data sharing and reuse, namely data submission and access procedures and aspects of interoperability. Second, we discuss challenges, benefits, and future opportunities, focusing on issues largely specific to sharing human data and drawing on N = 34 interviews with diverse stakeholders. The BRAIN Initiative-funded archive ecosystem faces interoperability and data stewardship challenges, such as achieving and maintaining interoperability of data and archives and harmonizing research participants’ informed consents for tiers of access for human data across multiple archives. Yet, a benefit of this distributed archive ecosystem is the ability of more specialized archives to adapt to the needs of particular research communities. Finally, the multiple archives offer ample raw material for network evolution in response to the needs of neuroscientists over time. Our first objective in this paper is to provide a guide to the BRAIN Initiative data-sharing ecosystem for readers interested in sharing and reusing neuroscience data. Second, our analysis supports the development of empirically informed policy and practice aimed at making neuroscience data more findable, accessible, interoperable, and reusable.

    1. Neuroscience
    Gordon H Petty, Randy M Bruno
    Research Article

    Each sensory modality has its own primary and secondary thalamic nuclei. While the primary thalamic nuclei are well understood to relay sensory information from the periphery to the cortex, the role of secondary sensory nuclei is elusive. We trained head-fixed mice to attend to one sensory modality while ignoring a second modality, namely to attend to touch and ignore vision, or vice versa. Arrays were used to record simultaneously from the secondary somatosensory thalamus (POm) and secondary visual thalamus (LP). In mice trained to respond to tactile stimuli and ignore visual stimuli, POm was robustly activated by touch and largely unresponsive to visual stimuli. A different pattern was observed when mice were trained to respond to visual stimuli and ignore touch, with POm now more robustly activated during visual trials. This POm activity was not explained by differences in movements (i.e. whisking, licking, pupil dilation) resulting from the two tasks. Post hoc histological reconstruction of array tracks through POm revealed that subregions varied in their degree of plasticity. LP exhibited similar phenomena. We conclude that behavioral training reshapes activity in secondary thalamic nuclei. Secondary nuclei respond to the same behaviorally relevant, reward-predicting stimuli regardless of stimulus modality.