Mechanisms of substrate recognition by a typhoid toxin secretion-associated muramidase

  1. Tobias Geiger
  2. Maria Lara-Tejero
  3. Yong Xiong
  4. Jorge E Galán  Is a corresponding author
  1. Yale University School of Medicine, United States

Abstract

Typhoid toxin is a virulence factor for the bacterial pathogen Salmonella Typhi, which causes typhoid fever in humans. After its synthesis by intracellular bacteria, typhoid toxin is secreted into the lumen of the Salmonella-containing vacuole by a secretion mechanism strictly dependent on TtsA, a specific muramidase that facilitates toxin transport through the peptidoglycan layer. Here we show that substrate recognition by TtsA depends on a discrete domain within its carboxy terminus, which targets the enzyme to the bacterial poles to recognize YcbB-edited peptidoglycan. Comparison of the atomic structures of TtsA bound to its substrate and that of a close homolog with different specificity identified specific determinants involved in substrate recognition. Combined with structure-guided mutagenesis and in vitro and in vivo crosslinking experiments, this study provides an unprecedented view of the mechanisms by which a muramidase recognizes its peptidoglycan substrate to facilitate protein secretion.

Data availability

The diffraction data have been deposited in PDB under accession code 6v40 and 6v3z. The rest of the data are included in the manuscript and associated supporting files.

The following data sets were generated

Article and author information

Author details

  1. Tobias Geiger

    Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Maria Lara-Tejero

    Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yong Xiong

    Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jorge E Galán

    Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
    For correspondence
    jorge.galan@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6531-0355

Funding

National Institute of Allergy and Infectious Diseases (AI079022)

  • Jorge E Galán

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael T Laub, Massachusetts Institute of Technology, United States

Version history

  1. Received: November 9, 2019
  2. Accepted: January 18, 2020
  3. Accepted Manuscript published: January 20, 2020 (version 1)
  4. Version of Record published: February 3, 2020 (version 2)

Copyright

© 2020, Geiger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,846
    Page views
  • 246
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tobias Geiger
  2. Maria Lara-Tejero
  3. Yong Xiong
  4. Jorge E Galán
(2020)
Mechanisms of substrate recognition by a typhoid toxin secretion-associated muramidase
eLife 9:e53473.
https://doi.org/10.7554/eLife.53473

Share this article

https://doi.org/10.7554/eLife.53473

Further reading

    1. Medicine
    2. Microbiology and Infectious Disease
    Fangyan Wang, Xiujie Liu ... Wantie Wang
    Research Article

    Hepatic ischemia/reperfusion injury (HIRI) is a common and inevitable factor leading to poor prognosis in various liver diseases, making the outcomes of current treatments in clinic unsatisfactory. Metformin has been demonstrated to be beneficial to alleviate HIRI in recent studies, however, the underpinning mechanism remains unclear. In this study, we found metformin mitigates HIRI-induced ferroptosis through reshaped gut microbiota in mice, which was confirmed by the results of fecal microbiota transplantation treatment but showed the elimination of the beneficial effects when gut bacteria were depleted using antibiotics. Detailedly, through 16S rRNA and metagenomic sequencing, we identified that the metformin-reshaped microbiota was characterized by the increase of gamma-aminobutyric acid (GABA) producing bacteria. This increase was further confirmed by the elevation of GABA synthesis key enzymes, glutamic acid decarboxylase and putrescine aminotransferase, in gut microbes of metformin-treated mice and healthy volunteers. Furthermore, the benefit of GABA against HIRI-induced ferroptosis was demonstrated in GABA-treated mice. Collectively, our data indicate that metformin can mitigate HIRI-induced ferroptosis by reshaped gut microbiota, with GABA identified as a key metabolite.

    1. Cancer Biology
    2. Microbiology and Infectious Disease
    Bo Yu, Congzhou Liu ... David N Fredricks
    Research Article

    Investigating the human fallopian tube (FT) microbiota has significant implications for understanding the pathogenesis of ovarian cancer (OC). In this large prospective study, we collected swabs intraoperatively from the FT and other surgical sites as controls to profile the microbiota in the FT and to assess its relationship with OC. Eighty-one OC and 106 non-cancer patients were enrolled and 1001 swabs were processed for 16S rRNA gene PCR and sequencing. We identified 84 bacterial species that may represent the FT microbiota and found a clear shift in the microbiota of the OC patients when compared to the non-cancer patients. Of the top 20 species that were most prevalent in the FT of OC patients, 60% were bacteria that predominantly reside in the gastrointestinal tract, while 30% normally reside in the mouth. Serous carcinoma had higher prevalence of almost all 84 FT bacterial species compared to the other OC subtypes. The clear shift in the FT microbiota in OC patients establishes the scientific foundation for future investigation into the role of these bacteria in the pathogenesis of OC.