ER-luminal [Ca2+] regulation of InsP3 receptor gating mediated by an ER-luminal peripheral Ca2+-binding protein

  1. Horia Vais
  2. Min Wang
  3. Karthik Mallilankaraman
  4. Riley Payne
  5. Chris McKennan
  6. Jeffrey T Lock
  7. Lynn A Spruce
  8. Carly Fiest
  9. Matthew Y Chan
  10. Ian Parker
  11. Steven H Seeholzer
  12. J Kevin Foskett  Is a corresponding author
  13. Don-On Daniel Mak
  1. University of Pennsylvania, United States
  2. University of Pittsburgh, United States
  3. University of California, Irvine, United States
  4. Children's hospital of Philadelphia, United States

Abstract

Modulating cytoplasmic Ca2+ concentration ([Ca2+]i) by endoplasmic reticulum (ER)-localized inositol 1,4,5-trisphosphate receptor (InsP3R) Ca2+-release channels is a universal signaling pathway that regulates numerous cell-physiological processes. Whereas much is known regarding regulation of InsP3R activity by cytoplasmic ligands and processes, its regulation by ER-luminal Ca2+ concentration ([Ca2+]ER) is poorly understood and controversial. We discovered that the InsP3R is regulated by a peripheral membrane-associated ER-luminal protein that strongly inhibits the channel in the presence of high, physiological [Ca2+]ER. The widely-expressed Ca2+-binding protein annexin A1 (ANXA1) is present in the nuclear envelope lumen and, through interaction with a luminal region of the channel, can modify high-[Ca2+]ER inhibition of InsP3R activity. Genetic knockdown of ANXA1 expression enhanced global and local elementary InsP3-mediated Ca2+ signaling events. Thus, [Ca2+]ER is a major regulator of InsP3R channel activity and InsP3R-mediated [Ca2+]i signaling in cells by controlling an interaction of the channel with a peripheral membrane-associated Ca2+-binding protein, likely ANXA1.

Data availability

All data generated and analyzed are included in the manuscript and supporting files.

Article and author information

Author details

  1. Horia Vais

    Department of Physiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Min Wang

    Department of Physiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Karthik Mallilankaraman

    Department of Physiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9492-9050
  4. Riley Payne

    Department of Physiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Chris McKennan

    Department of Statistics, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jeffrey T Lock

    Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1522-3189
  7. Lynn A Spruce

    Proteomics Core, Children's hospital of Philadelphia, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Carly Fiest

    Department of Physiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1162-712X
  9. Matthew Y Chan

    Department of Physiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Ian Parker

    Department of Physiology and Biophysics, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Steven H Seeholzer

    Proteomics Core, Children's hospital of Philadelphia, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. J Kevin Foskett

    Department of Physiology, University of Pennsylvania, Philadelphia, United States
    For correspondence
    foskett@pennmedicine.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8854-0268
  13. Don-On Daniel Mak

    Department of Physiology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R37GM56328)

  • J Kevin Foskett

National Institutes of Health (R01GM114042)

  • Don-On Daniel Mak

National Institutes of Health (GM048071)

  • Ian Parker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mark T Nelson, University of Vermont, United States

Version history

  1. Received: November 12, 2019
  2. Accepted: May 15, 2020
  3. Accepted Manuscript published: May 18, 2020 (version 1)
  4. Version of Record published: May 29, 2020 (version 2)

Copyright

© 2020, Vais et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,593
    views
  • 220
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Horia Vais
  2. Min Wang
  3. Karthik Mallilankaraman
  4. Riley Payne
  5. Chris McKennan
  6. Jeffrey T Lock
  7. Lynn A Spruce
  8. Carly Fiest
  9. Matthew Y Chan
  10. Ian Parker
  11. Steven H Seeholzer
  12. J Kevin Foskett
  13. Don-On Daniel Mak
(2020)
ER-luminal [Ca2+] regulation of InsP3 receptor gating mediated by an ER-luminal peripheral Ca2+-binding protein
eLife 9:e53531.
https://doi.org/10.7554/eLife.53531

Share this article

https://doi.org/10.7554/eLife.53531

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Damien M Rasmussen, Manny M Semonis ... Nicholas M Levinson
    Research Article

    The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.

    1. Structural Biology and Molecular Biophysics
    Nicholas James Ose, Paul Campitelli ... Sefika Banu Ozkan
    Research Article

    We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.