Vascular permeability in retinopathy is regulated by VEGFR2 Y949 signaling to VE-cadherin

  1. Ross Smith
  2. Takeshi Ninchoji
  3. Emma Gordon
  4. Helder André
  5. Elizabetta Dejana
  6. Dietmar Vestweber
  7. Anders Kvanta
  8. Lena Claesson-Welsh  Is a corresponding author
  1. Uppsala University, Sweden
  2. Karolinska Institute, Sweden
  3. Max Planck Institute for Molecular Biomedicine, Germany

Abstract

Edema stemming from leaky blood vessels is common in eye diseases such as age-related macular degeneration and diabetic retinopathy. Whereas therapies targeting vascular endothelial growth factor A (VEGFA) can suppress leakage, side-effects include vascular rarefaction and geographic atrophy. By challenging mouse models representing different steps in VEGFA/VEGF receptor 2 (VEGFR2)-induced vascular permeability, we show that targeting signaling downstream of VEGFR2 pY949 limits vascular permeability in retinopathy induced by high oxygen or by laser-wounding. Although suppressed permeability is accompanied by reduced pathological neoangiogenesis in oxygen-induced retinopathy, similarly sized lesions leak less in mutant mice, separating regulation of permeability from angiogenesis,. Strikingly, vascular endothelial (VE)-cadherin phosphorylation at the Y685, but not Y658, residue is reduced when VEGFR2 pY949 signaling is impaired. These findings support a mechanism whereby VE-cadherin Y685 phosphorylation is selectively associated with excessive vascular leakage. Therapeutically, targeting VEGFR2-regulated VE-cadherin phosphorylation could suppress edema while leaving other VEGFR2-dependent functions intact.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Text files containing the ImageJ macros used for automatic detection of microspheres in Figures 1 and 2 are provided.

Article and author information

Author details

  1. Ross Smith

    Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Takeshi Ninchoji

    Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Emma Gordon

    Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Helder André

    Department of Clinical Neuroscience, Section for Ophthalmology and Vision, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Elizabetta Dejana

    Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Dietmar Vestweber

    Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3517-732X
  7. Anders Kvanta

    Neuroscience, Section for Ophthalmology and Vision, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  8. Lena Claesson-Welsh

    Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
    For correspondence
    lena.welsh@igp.uu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4275-2000

Funding

Australian Research Council (DE170100167)

  • Emma Gordon

Vetenskapsrådet (2015-02375)

  • Lena Claesson-Welsh

Knut och Alice Wallenbergs Stiftelse (2015.0030)

  • Lena Claesson-Welsh

Knut och Alice Wallenbergs Stiftelse (2015.0275)

  • Lena Claesson-Welsh

Fondation Leducq (17 CVD 03)

  • Lena Claesson-Welsh

Fondation ARC pour la Recherche sur le Cancer (AIRC IG 18683)

  • Elizabetta Dejana

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mouse husbandry and oxygen-induced retinopathy (OIR) challenge took place at Uppsala University, and the University board of animal experimentation approved all animal work for those studies (Permit Number 5.8.18-06789-2018). Choroidal neovascularization (CNV) experiments took place at Karolinska Institutet, St. Erik Eye Hospital, Stockholm; the procedures were approved by the Stockholm's Committee for Ethical Animal Research (Permit Number Dnr 49/15). Animal handling was in accordance to the ARVO statement for the Use of Animals in Ophthalmologic and Vision Research.

Copyright

© 2020, Smith et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,055
    views
  • 604
    downloads
  • 85
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ross Smith
  2. Takeshi Ninchoji
  3. Emma Gordon
  4. Helder André
  5. Elizabetta Dejana
  6. Dietmar Vestweber
  7. Anders Kvanta
  8. Lena Claesson-Welsh
(2020)
Vascular permeability in retinopathy is regulated by VEGFR2 Y949 signaling to VE-cadherin
eLife 9:e54056.
https://doi.org/10.7554/eLife.54056

Share this article

https://doi.org/10.7554/eLife.54056

Further reading

    1. Cell Biology
    2. Neuroscience
    Vibhavari Aysha Bansal, Jia Min Tan ... Toh Hean Ch'ng
    Research Article

    The emergence of Aβ pathology is one of the hallmarks of Alzheimer’s disease (AD), but the mechanisms and impact of Aβ in progression of the disease is unclear. The nuclear pore complex (NPC) is a multi-protein assembly in mammalian cells that regulates movement of macromolecules across the nuclear envelope; its function is shown to undergo age-dependent decline during normal aging and is also impaired in multiple neurodegenerative disorders. Yet not much is known about the impact of Aβ on NPC function in neurons. Here, we examined NPC and nucleoporin (NUP) distribution and nucleocytoplasmic transport using a mouse model of AD (AppNL-G-F/NL-G-F) that expresses Aβ in young animals. Our studies revealed that a time-dependent accumulation of intracellular Aβ corresponded with a reduction of NPCs and NUPs in the nuclear envelope which resulted in the degradation of the permeability barrier and inefficient segregation of nucleocytoplasmic proteins, and active transport. As a result of the NPC dysfunction App KI neurons become more vulnerable to inflammation-induced necroptosis – a programmed cell death pathway where the core components are activated via phosphorylation through nucleocytoplasmic shutting. Collectively, our data implicates Aβ in progressive impairment of nuclear pore function and further confirms that the protein complex is vulnerable to disruption in various neurodegenerative diseases and is a potential therapeutic target.

    1. Cell Biology
    Qi Zeng, Chen Yao ... Shuai Chen
    Research Article

    Mounting evidence has demonstrated the genetic association of ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3) gene polymorphisms with bronchial asthma and a diverse set of inflammatory disorders. However, its role in type I interferon (type I IFN) signaling remains poorly defined. Herein, we report that ORMDL3 is a negative modulator of the type I IFN signaling by interacting with mitochondrial antiviral signaling protein (MAVS) and subsequently promoting the proteasome-mediated degradation of retinoic acid-inducible gene I (RIG-I). Immunoprecipitation coupled with mass spectrometry (IP-MS) assays uncovered that ORMDL3 binds to ubiquitin-specific protease 10 (USP10), which forms a complex with and stabilizes RIG-I through decreasing its K48-linked ubiquitination. ORMDL3 thus disrupts the interaction between USP10 and RIG-I, thereby promoting RIG-I degradation. Additionally, subcutaneous syngeneic tumor models in C57BL/6 mice revealed that inhibition of ORMDL3 enhances anti-tumor efficacy by augmenting the proportion of cytotoxic CD8 positive T cells and IFN production in the tumor microenvironment (TME). Collectively, our findings reveal the pivotal roles of ORMDL3 in maintaining antiviral innate immune responses and anti-tumor immunity.