Abstract

Metabolic pathways and inflammatory processes are under circadian regulation. While rhythmic immune cell recruitment is known to impact infection outcomes, whether the circadian clock modulates immunometabolism remains unclear. We find the molecular clock Bmal1 is induced by inflammatory stimulants, including Ifn-g/lipopolysaccharide (M1) and tumor-conditioned medium, to maintain mitochondrial metabolism under these metabolically stressed conditions in mouse macrophages. Upon M1 stimulation, myeloid-specific Bmal1 knockout (M-BKO) renders macrophages unable to sustain mitochondrial function, enhancing succinate dehydrogenase (SDH)-mediated mitochondrial ROS production and Hif-1a-dependent metabolic reprogramming and inflammatory damage. In tumor-associated macrophages, the aberrant Hif-1a activation and metabolic dysregulation by M-BKO contribute to an immunosuppressive tumor microenvironment. Consequently, M-BKO increases melanoma tumor burden, while administrating an SDH inhibitor dimethyl malonate suppresses tumor growth. Therefore, Bmal1 functions as a metabolic checkpoint integrating macrophage mitochondrial metabolism, redox homeostasis and effector functions. This Bmal1-Hif-1a regulatory loop may provide therapeutic opportunities for inflammatory diseases and immunotherapy.

Data availability

Raw RNA-seq data submitted to GEO: accession number GSE148510. All analyzed RNA-seq and metabolite data are included in the manuscript and source data for Fig 3 and Fig. 5.

The following data sets were generated

Article and author information

Author details

  1. Ryan K Alexander

    Department of Molecular Metabolism, HSPH, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yae-Huei Liou

    Department of Molecular Metabolism, HSPH, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nelson H Knudsen

    Department of Molecular Metabolism, HSPH, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kyle A Starost

    Department of Molecular Metabolism, HSPH, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Chuanrui Xu

    Department of Molecular Metabolism, HSPH, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3225-4083
  6. Alexander L Hyde

    Department of Molecular Metabolism, HSPH, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sihao Liu

    Department of Molecular Metabolism, HSPH, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. David Jacobi

    Department of Molecular Metabolism, HSPH, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nan-Shih Liao

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  10. Chih-Hao Lee

    Department of Molecular Metabolism, HSPH, Boston, United States
    For correspondence
    clee@hsph.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6090-0786

Funding

National Institute of Allergy and Infectious Diseases (R21AI131659)

  • Chih-Hao Lee

National Institute of General Medical Sciences (F31GM117854)

  • Ryan K Alexander

National Institute of Diabetes and Digestive and Kidney Diseases (F31DK107256)

  • Nelson H Knudsen

Ministry of Science and Technology, Taiwan, ROC

  • Yae-Huei Liou

Academia Sinica (AS-106-TP-L08)

  • Nan-Shih Liao

American Heart Association (16GRNT31460005)

  • Chih-Hao Lee

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK113791)

  • Chih-Hao Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal studies were approved by the Harvard Medical Area Standing Committee on Animal Research. IACUC protocol #IS00001011

Copyright

© 2020, Alexander et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,630
    views
  • 1,082
    downloads
  • 91
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ryan K Alexander
  2. Yae-Huei Liou
  3. Nelson H Knudsen
  4. Kyle A Starost
  5. Chuanrui Xu
  6. Alexander L Hyde
  7. Sihao Liu
  8. David Jacobi
  9. Nan-Shih Liao
  10. Chih-Hao Lee
(2020)
Bmal1 integrates mitochondrial metabolism and macrophage activation
eLife 9:e54090.
https://doi.org/10.7554/eLife.54090

Share this article

https://doi.org/10.7554/eLife.54090

Further reading

    1. Cell Biology
    Jarno Mäkelä, Alexandros Papagiannakis ... Christine Jacobs-Wagner
    Research Article

    Defining the cellular factors that drive growth rate and proteome composition is essential for understanding and manipulating cellular systems. In bacteria, ribosome concentration is known to be a constraining factor of cell growth rate, while gene concentration is usually assumed not to be limiting. Here, using single-molecule tracking, quantitative single-cell microscopy, and modeling, we show that genome dilution in Escherichia coli cells arrested for DNA replication limits total RNA polymerase activity within physiological cell sizes across tested nutrient conditions. This rapid-onset limitation on bulk transcription results in sub-linear scaling of total active ribosomes with cell size and sub-exponential growth. Such downstream effects on bulk translation and cell growth are near-immediately detectable in a nutrient-rich medium, but delayed in nutrient-poor conditions, presumably due to cellular buffering activities. RNA sequencing and tandem-mass-tag mass spectrometry experiments further reveal that genome dilution remodels the relative abundance of mRNAs and proteins with cell size at a global level. Altogether, our findings indicate that chromosome concentration is a limiting factor of transcription and a global modulator of the transcriptome and proteome composition in E. coli. Experiments in Caulobacter crescentus and comparison with eukaryotic cell studies identify broadly conserved DNA concentration-dependent scaling principles of gene expression.

    1. Cell Biology
    2. Medicine
    Yongli Qin, Jumpei Shirakawa ... Baohong Zhao
    Research Article

    The IncRNA Malat1 was initially believed to be dispensable for physiology due to the lack of observable phenotypes in Malat1 knockout (KO) mice. However, our study challenges this conclusion. We found that both Malat1 KO and conditional KO mice in the osteoblast lineage exhibit significant osteoporosis. Mechanistically, Malat1 acts as an intrinsic regulator in osteoblasts to promote osteogenesis. Interestingly, Malat1 does not directly affect osteoclastogenesis but inhibits osteoclastogenesis in a non-autonomous manner in vivo via integrating crosstalk between multiple cell types, including osteoblasts, osteoclasts, and chondrocytes. Our findings substantiate the existence of a novel remodeling network in which Malat1 serves as a central regulator by binding to β-catenin and functioning through the β-catenin-OPG/Jagged1 pathway in osteoblasts and chondrocytes. In pathological conditions, Malat1 significantly promotes bone regeneration in fracture healing. Bone homeostasis and regeneration are crucial to well-being. Our discoveries establish a previous unrecognized paradigm model of Malat1 function in the skeletal system, providing novel mechanistic insights into how a lncRNA integrates cellular crosstalk and molecular networks to fine tune tissue homeostasis, remodeling and repair.