Abstract

Metabolic pathways and inflammatory processes are under circadian regulation. While rhythmic immune cell recruitment is known to impact infection outcomes, whether the circadian clock modulates immunometabolism remains unclear. We find the molecular clock Bmal1 is induced by inflammatory stimulants, including Ifn-g/lipopolysaccharide (M1) and tumor-conditioned medium, to maintain mitochondrial metabolism under these metabolically stressed conditions in mouse macrophages. Upon M1 stimulation, myeloid-specific Bmal1 knockout (M-BKO) renders macrophages unable to sustain mitochondrial function, enhancing succinate dehydrogenase (SDH)-mediated mitochondrial ROS production and Hif-1a-dependent metabolic reprogramming and inflammatory damage. In tumor-associated macrophages, the aberrant Hif-1a activation and metabolic dysregulation by M-BKO contribute to an immunosuppressive tumor microenvironment. Consequently, M-BKO increases melanoma tumor burden, while administrating an SDH inhibitor dimethyl malonate suppresses tumor growth. Therefore, Bmal1 functions as a metabolic checkpoint integrating macrophage mitochondrial metabolism, redox homeostasis and effector functions. This Bmal1-Hif-1a regulatory loop may provide therapeutic opportunities for inflammatory diseases and immunotherapy.

Data availability

Raw RNA-seq data submitted to GEO: accession number GSE148510. All analyzed RNA-seq and metabolite data are included in the manuscript and source data for Fig 3 and Fig. 5.

The following data sets were generated

Article and author information

Author details

  1. Ryan K Alexander

    Department of Molecular Metabolism, HSPH, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yae-Huei Liou

    Department of Molecular Metabolism, HSPH, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nelson H Knudsen

    Department of Molecular Metabolism, HSPH, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kyle A Starost

    Department of Molecular Metabolism, HSPH, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Chuanrui Xu

    Department of Molecular Metabolism, HSPH, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3225-4083
  6. Alexander L Hyde

    Department of Molecular Metabolism, HSPH, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sihao Liu

    Department of Molecular Metabolism, HSPH, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. David Jacobi

    Department of Molecular Metabolism, HSPH, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nan-Shih Liao

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  10. Chih-Hao Lee

    Department of Molecular Metabolism, HSPH, Boston, United States
    For correspondence
    clee@hsph.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6090-0786

Funding

National Institute of Allergy and Infectious Diseases (R21AI131659)

  • Chih-Hao Lee

National Institute of General Medical Sciences (F31GM117854)

  • Ryan K Alexander

National Institute of Diabetes and Digestive and Kidney Diseases (F31DK107256)

  • Nelson H Knudsen

Ministry of Science and Technology, Taiwan, ROC

  • Yae-Huei Liou

Academia Sinica (AS-106-TP-L08)

  • Nan-Shih Liao

American Heart Association (16GRNT31460005)

  • Chih-Hao Lee

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK113791)

  • Chih-Hao Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal studies were approved by the Harvard Medical Area Standing Committee on Animal Research. IACUC protocol #IS00001011

Copyright

© 2020, Alexander et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,809
    views
  • 1,103
    downloads
  • 95
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ryan K Alexander
  2. Yae-Huei Liou
  3. Nelson H Knudsen
  4. Kyle A Starost
  5. Chuanrui Xu
  6. Alexander L Hyde
  7. Sihao Liu
  8. David Jacobi
  9. Nan-Shih Liao
  10. Chih-Hao Lee
(2020)
Bmal1 integrates mitochondrial metabolism and macrophage activation
eLife 9:e54090.
https://doi.org/10.7554/eLife.54090

Share this article

https://doi.org/10.7554/eLife.54090

Further reading

    1. Cell Biology
    Rachel Pudlowski, Lingyi Xu ... Jennifer T Wang
    Research Advance

    Centrioles have a unique, conserved architecture formed by three linked, ‘triplet’, microtubules arranged in ninefold symmetry. The mechanisms by which these triplet microtubules are formed remain unclear but likely involve the noncanonical tubulins delta-tubulin and epsilon-tubulin. Previously, we found that human cells lacking delta-tubulin or epsilon-tubulin form abnormal centrioles, characterized by an absence of triplet microtubules, lack of central core protein POC5, and a futile cycle of centriole formation and disintegration (Wang et al., 2017). Here, we show that human cells lacking either TEDC1 or TEDC2 have similar abnormalities. Using ultrastructure expansion microscopy, we observed that mutant centrioles elongate to the same length as control centrioles in G2 phase and fail to recruit central core scaffold proteins. Remarkably, mutant centrioles also have an expanded proximal region. During mitosis, these mutant centrioles further elongate before fragmenting and disintegrating. All four proteins physically interact and TEDC1 and TEDC2 can form a subcomplex in the absence of the tubulins, supporting an AlphaFold Multimer model of the tetramer. TEDC1 and TEDC2 localize to centrosomes and are mutually dependent on each other and on delta-tubulin and epsilon-tubulin for localization. Our results demonstrate that delta-tubulin, epsilon-tubulin, TEDC1, and TEDC2 function together to promote robust centriole architecture, laying the foundation for future studies on the mechanisms underlying the assembly of triplet microtubules and their interactions with centriole structure.

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Liyi Wang, Shiqi Liu ... Tizhong Shan
    Research Article

    Conjugated linoleic acids (CLAs) can serve as a nutritional intervention to regulate quality, function, and fat infiltration in skeletal muscles, but the specific cytological mechanisms remain unknown. Here, we applied single-nucleus RNA-sequencing (snRNA-seq) to characterize the cytological mechanism of CLAs regulates fat infiltration in skeletal muscles based on pig models. We investigated the regulatory effects of CLAs on cell populations and molecular characteristics in pig muscles and found CLAs could promote the transformation of fast glycolytic myofibers into slow oxidative myofibers. We also observed three subpopulations including SCD+/DGAT2+, FABP5+/SIAH1+, and PDE4D+/PDE7B+ subclusters in adipocytes and CLAs could increase the percentage of SCD+/DGAT2+ adipocytes. RNA velocity analysis showed FABP5+/SIAH1+ and PDE4D+/PDE7B+ adipocytes could differentiate into SCD+/DGAT2+ adipocytes. We further verified the differentiated trajectory of mature adipocytes and identified PDE4D+/PDE7B+ adipocytes could differentiate into SCD+/DGAT2+ and FABP5+/SIAH1+ adipocytes by using high intramuscular fat (IMF) content Laiwu pig models. The cell-cell communication analysis identified the interaction network between adipocytes and other subclusters such as fibro/adipogenic progenitors (FAPs). Pseudotemporal trajectory analysis and RNA velocity analysis also showed FAPs could differentiate into PDE4D+/PDE7B+ preadipocytes and we discovered the differentiated trajectory of preadipocytes into mature adipocytes. Besides, we found CLAs could promote FAPs differentiate into SCD+/DGAT2+ adipocytes via inhibiting c-Jun N-terminal kinase (JNK) signaling pathway in vitro. This study provides a foundation for regulating fat infiltration in skeletal muscles by using nutritional strategies and provides potential opportunities to serve pig as an animal model to study human fat infiltrated diseases.