The landscape of coadaptation in Vibrio parahaemolyticus

  1. Yujun Cui  Is a corresponding author
  2. Chao Yang
  3. Hongling Qiu
  4. Hui Wang
  5. Ruifu Yang
  6. Daniel Falush  Is a corresponding author
  1. Beijing Institute of Microbiology and Epidemiology, China
  2. Institute for Nutritional Sciences, Chinese Academy of Sciences, China
  3. Institute Pasteur of Shanghai, Chinese Academy of Sciences, China

Abstract

Investigating fitness interactions in natural populations remains a considerable challenge. We take advantage of the unique population structure of Vibrio parahaemolyticus, a bacterial pathogen of humans and shrimp, to perform a genome-wide screen for coadapted genetic elements. We identified 90 interaction groups (IGs) involving 1,560 coding genes. 82 IGs are between accessory genes, many of which have functions related to carbohydrate transport and metabolism. Only 8 involve both core and accessory genomes. The largest includes 1,540 SNPs in 82 genes and 338 accessory genome elements, many involved in lateral flagella and cell wall biogenesis. The interactions have a complex hierarchical structure encoding at least four distinct ecological strategies. One strategy involves a divergent profile in multiple genome regions, while the others involve fewer genes and are more plastic. Our results imply that most genetic alliances are ephemeral but that increasingly complex strategies can evolve and eventually cause speciation.

Data availability

All data are publicly available.

The following previously published data sets were used

Article and author information

Author details

  1. Yujun Cui

    State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    For correspondence
    cuiyujun.new@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Chao Yang

    State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0626-0586
  3. Hongling Qiu

    Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Hui Wang

    Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ruifu Yang

    State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel Falush

    Center for Microbes, Development and Health, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
    For correspondence
    danielfalush@googlemail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2956-0795

Funding

National Key Research & Development Program of China (No. 2017YFC1601503 and 2018YFC1603902)

  • Yujun Cui

National Key Program for Infectious Diseases of China (No. 2018ZX10101003 and 2018ZX10714-002)

  • Yujun Cui

Sanming Project of Medicine in Shenzhen (No. SZSM201811071)

  • Yujun Cui

National Natural Science Foundation of China (No. ZDRW-ZS-2017-1)

  • Yujun Cui

Medical Research Council (MR/M501608/1)

  • Daniel Falush

Shanghai Municipal Science and Technology Major Project (2019SHZDZX02)

  • Daniel Falush

Chinese Academy of Sciences 100 talents program

  • Daniel Falush

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Paul B Rainey, Max Planck Institute for Evolutionary Biology, Germany

Version history

  1. Received: December 3, 2019
  2. Accepted: March 19, 2020
  3. Accepted Manuscript published: March 20, 2020 (version 1)
  4. Version of Record published: March 27, 2020 (version 2)

Copyright

© 2020, Cui et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,952
    views
  • 286
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yujun Cui
  2. Chao Yang
  3. Hongling Qiu
  4. Hui Wang
  5. Ruifu Yang
  6. Daniel Falush
(2020)
The landscape of coadaptation in Vibrio parahaemolyticus
eLife 9:e54136.
https://doi.org/10.7554/eLife.54136

Share this article

https://doi.org/10.7554/eLife.54136

Further reading

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zachary H Williams, Alvaro Dafonte Imedio ... Welkin E Johnson
    Research Article

    HERV-K(HML-2), the youngest clade of human endogenous retroviruses (HERVs), includes many intact or nearly intact proviruses, but no replication competent HML-2 proviruses have been identified in humans. HML-2-related proviruses are present in other primates, including rhesus macaques, but the extent and timing of HML-2 activity in macaques remains unclear. We have identified 145 HML-2-like proviruses in rhesus macaques, including a clade of young, rhesus-specific insertions. Age estimates, intact ORFs, and insertional polymorphism of these insertions are consistent with recent or ongoing infectious activity in macaques. 106 of the proviruses form a clade characterized by an ~750 bp sequence between env and the 3' LTR, derived from an ancient recombination with a HERV-K(HML-8)-related virus. This clade is found in Old World monkeys (OWM), but not great apes, suggesting it originated after the ape/OWM split. We identified similar proviruses in white-cheeked gibbons; the gibbon insertions cluster within the OWM recombinant clade, suggesting interspecies transmission from OWM to gibbons. The LTRs of the youngest proviruses have deletions in U3, which disrupt the Rec Response Element (RcRE), required for nuclear export of unspliced viral RNA. We show that the HML-8 derived region functions as a Rec-independent constitutive transport element (CTE), indicating the ancestral Rec-RcRE export system was replaced by a CTE mechanism.

    1. Evolutionary Biology
    Deng Wang, Yaqin Qiang ... Jian Han
    Research Article

    Extant ecdysozoans (moulting animals) are represented by a great variety of soft-bodied or articulated organisms that may or may not have appendages. However, controversies remain about the vermiform nature (i.e. elongated and tubular) of their ancestral body plan. We describe here Beretella spinosa gen. et sp. nov. a tiny (maximal length 3 mm) ecdysozoan from the lowermost Cambrian, Yanjiahe Formation, South China, characterized by an unusual sack-like appearance, single opening, and spiny ornament. Beretella spinosa gen. et sp. nov has no equivalent among animals, except Saccorhytus coronarius, also from the basal Cambrian. Phylogenetic analyses resolve both fossil species as a sister group (Saccorhytida) to all known Ecdysozoa, thus suggesting that ancestral ecdysozoans may have been non-vermiform animals. Saccorhytids are likely to represent an early off-shot along the stem-line Ecdysozoa. Although it became extinct during the Cambrian, this animal lineage provides precious insight into the early evolution of Ecdysozoa and the nature of the earliest representatives of the group.