The landscape of coadaptation in Vibrio parahaemolyticus

  1. Yujun Cui  Is a corresponding author
  2. Chao Yang
  3. Hongling Qiu
  4. Hui Wang
  5. Ruifu Yang
  6. Daniel Falush  Is a corresponding author
  1. Beijing Institute of Microbiology and Epidemiology, China
  2. Institute for Nutritional Sciences, Chinese Academy of Sciences, China
  3. Institute Pasteur of Shanghai, Chinese Academy of Sciences, China

Abstract

Investigating fitness interactions in natural populations remains a considerable challenge. We take advantage of the unique population structure of Vibrio parahaemolyticus, a bacterial pathogen of humans and shrimp, to perform a genome-wide screen for coadapted genetic elements. We identified 90 interaction groups (IGs) involving 1,560 coding genes. 82 IGs are between accessory genes, many of which have functions related to carbohydrate transport and metabolism. Only 8 involve both core and accessory genomes. The largest includes 1,540 SNPs in 82 genes and 338 accessory genome elements, many involved in lateral flagella and cell wall biogenesis. The interactions have a complex hierarchical structure encoding at least four distinct ecological strategies. One strategy involves a divergent profile in multiple genome regions, while the others involve fewer genes and are more plastic. Our results imply that most genetic alliances are ephemeral but that increasingly complex strategies can evolve and eventually cause speciation.

Data availability

All data are publicly available.

The following previously published data sets were used

Article and author information

Author details

  1. Yujun Cui

    State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    For correspondence
    cuiyujun.new@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Chao Yang

    State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0626-0586
  3. Hongling Qiu

    Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Hui Wang

    Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ruifu Yang

    State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel Falush

    Center for Microbes, Development and Health, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
    For correspondence
    danielfalush@googlemail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2956-0795

Funding

National Key Research & Development Program of China (No. 2017YFC1601503 and 2018YFC1603902)

  • Yujun Cui

National Key Program for Infectious Diseases of China (No. 2018ZX10101003 and 2018ZX10714-002)

  • Yujun Cui

Sanming Project of Medicine in Shenzhen (No. SZSM201811071)

  • Yujun Cui

National Natural Science Foundation of China (No. ZDRW-ZS-2017-1)

  • Yujun Cui

Medical Research Council (MR/M501608/1)

  • Daniel Falush

Shanghai Municipal Science and Technology Major Project (2019SHZDZX02)

  • Daniel Falush

Chinese Academy of Sciences 100 talents program

  • Daniel Falush

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Cui et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,184
    views
  • 320
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yujun Cui
  2. Chao Yang
  3. Hongling Qiu
  4. Hui Wang
  5. Ruifu Yang
  6. Daniel Falush
(2020)
The landscape of coadaptation in Vibrio parahaemolyticus
eLife 9:e54136.
https://doi.org/10.7554/eLife.54136

Share this article

https://doi.org/10.7554/eLife.54136

Further reading

    1. Evolutionary Biology
    Julia D Sigwart, Yunlong Li ... Jin Sun
    Research Article

    A major question in animal evolution is how genotypic and phenotypic changes are related, and another is when and whether ancient gene order is conserved in living clades. Chitons, the molluscan class Polyplacophora, retain a body plan and general morphology apparently little changed since the Palaeozoic. We present a comparative analysis of five reference quality genomes, including four de novo assemblies, covering all major chiton clades, and an updated phylogeny for the phylum. We constructed 20 ancient molluscan linkage groups (MLGs) and show that these are relatively conserved in bivalve karyotypes, but in chitons they are subject to re-ordering, rearrangement, fusion, or partial duplication and vary even between congeneric species. The largest number of novel fusions is in the most plesiomorphic clade Lepidopleurida, and the chitonid Liolophura japonica has a partial genome duplication, extending the occurrence of large-scale gene duplication within Mollusca. The extreme and dynamic genome rearrangements in this class stands in contrast to most other animals, demonstrating that chitons have overcome evolutionary constraints acting on other animal groups. The apparently conservative phenome of chitons belies rapid and extensive changes in genome.

    1. Evolutionary Biology
    Mauna R Dasari, Kimberly E Roche ... Elizabeth A Archie
    Research Article

    Mammalian gut microbiomes are highly dynamic communities that shape and are shaped by host aging, including age-related changes to host immunity, metabolism, and behavior. As such, gut microbial composition may provide valuable information on host biological age. Here, we test this idea by creating a microbiome-based age predictor using 13,563 gut microbial profiles from 479 wild baboons collected over 14 years. The resulting ‘microbiome clock’ predicts host chronological age. Deviations from the clock’s predictions are linked to some demographic and socio-environmental factors that predict baboon health and survival: animals who appear old-for-age tend to be male, sampled in the dry season (for females), and have high social status (both sexes). However, an individual’s ‘microbiome age’ does not predict the attainment of developmental milestones or lifespan. Hence, in our host population, gut microbiome age largely reflects current, as opposed to past, social and environmental conditions, and does not predict the pace of host development or host mortality risk. We add to a growing understanding of how age is reflected in different host phenotypes and what forces modify biological age in primates.