Synaptic mechanisms underlying modulation of locomotor-related motoneuron output by premotor cholinergic interneurons

  1. Filipe Nascimento
  2. Matthew James Broadhead
  3. Efstathia Tetringa
  4. Eirini Tsape
  5. Laskaro Zagoraiou
  6. Gareth Miles  Is a corresponding author
  1. University of St Andrews, United Kingdom
  2. Biomedical Research Foundation of the Academy of Athens, Greece

Abstract

Spinal motor networks are formed by diverse populations of interneurons that set the strength and rhythmicity of behaviors such as locomotion. A small cluster of cholinergic interneurons, expressing the transcription factor Pitx2, modulates the intensity of muscle activation via 'C-bouton' inputs to motoneurons. However, the synaptic mechanisms underlying this neuromodulation remain unclear. Here, we confirm in mice that Pitx2+ interneurons are active during fictive locomotion and that their chemogenetic inhibition reduces the amplitude of motor output. Furthermore, after genetic ablation of cholinergic Pitx2+ interneurons, M2 receptor-dependent regulation of the intensity of locomotor output is lost. Conversely, chemogenetic stimulation of Pitx2+ interneurons leads to activation of M2 receptors on motoneurons, regulation of Kv2.1 channels and greater motoneuron output due to an increase in the inter-spike afterhyperpolarization and a reduction in spike half-width. Our findings elucidate synaptic mechanisms by which cholinergic spinal interneurons modulate the final common pathway for motor output.

Data availability

All of the data presented in this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Filipe Nascimento

    School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9426-2807
  2. Matthew James Broadhead

    School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4078-5581
  3. Efstathia Tetringa

    Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
    Competing interests
    The authors declare that no competing interests exist.
  4. Eirini Tsape

    Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
    Competing interests
    The authors declare that no competing interests exist.
  5. Laskaro Zagoraiou

    Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
    Competing interests
    The authors declare that no competing interests exist.
  6. Gareth Miles

    School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
    For correspondence
    gbm4@st-andrews.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8624-4625

Funding

Alfred Dunhil Links Foundation

  • Filipe Nascimento

Biotechnology and Biological Sciences Research Council (BB/M021793/1)

  • Matthew James Broadhead
  • Gareth Miles

Foundation Sante

  • Eirini Tsape
  • Laskaro Zagoraiou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Claire Wyart, Institut du Cerveau et la Moelle épinière, Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, France

Ethics

Animal experimentation: All the procedures performed on animals were conducted in accordance with the UK Animals (Scientific Procedures) Act 1986 and were approved by the University of St Andrews Animal Welfare Ethics Committee. Experiments on animals performed in the Biomedical Research Foundation of the Academy of Athens were approved by the competent veterinary service of the Prefecture of Athens, Greece in accordance with the existing legal framework. The facility is registered as a 'breeding' and 'user' establishment by the Veterinary Service of the Prefecture of Athens according to the Presidential Decree 56/2013 in harmonization with the European Directive 2010/63/EU for the protection of animals used for scientific purposes.

Version history

  1. Received: December 4, 2019
  2. Accepted: February 20, 2020
  3. Accepted Manuscript published: February 21, 2020 (version 1)
  4. Version of Record published: March 9, 2020 (version 2)

Copyright

© 2020, Nascimento et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,545
    views
  • 377
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Filipe Nascimento
  2. Matthew James Broadhead
  3. Efstathia Tetringa
  4. Eirini Tsape
  5. Laskaro Zagoraiou
  6. Gareth Miles
(2020)
Synaptic mechanisms underlying modulation of locomotor-related motoneuron output by premotor cholinergic interneurons
eLife 9:e54170.
https://doi.org/10.7554/eLife.54170

Share this article

https://doi.org/10.7554/eLife.54170

Further reading

    1. Neuroscience
    Ya-Hui Lin, Li-Wen Wang ... Li-An Chu
    Research Article

    Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency. HIF-Clear also supports expansion microscopy and can be performed on a non-sectioned 15-year-old FFPE specimen, as well as a 3-month formalin-fixed mouse brain. Thus, HIF-Clear represents a feasible approach for researching archived FFPE specimens for future neuroscientific and 3D neuropathological analyses.

    1. Neuroscience
    Amanda Chu, Nicholas T Gordon ... Michael A McDannald
    Research Article

    Pavlovian fear conditioning has been extensively used to study the behavioral and neural basis of defensive systems. In a typical procedure, a cue is paired with foot shock, and subsequent cue presentation elicits freezing, a behavior theoretically linked to predator detection. Studies have since shown a fear conditioned cue can elicit locomotion, a behavior that - in addition to jumping, and rearing - is theoretically linked to imminent or occurring predation. A criticism of studies observing fear conditioned cue-elicited locomotion is that responding is non-associative. We gave rats Pavlovian fear discrimination over a baseline of reward seeking. TTL-triggered cameras captured 5 behavior frames/s around cue presentation. Experiment 1 examined the emergence of danger-specific behaviors over fear acquisition. Experiment 2 examined the expression of danger-specific behaviors in fear extinction. In total, we scored 112,000 frames for nine discrete behavior categories. Temporal ethograms show that during acquisition, a fear conditioned cue suppresses reward seeking and elicits freezing, but also elicits locomotion, jumping, and rearing - all of which are maximal when foot shock is imminent. During extinction, a fear conditioned cue most prominently suppresses reward seeking, and elicits locomotion that is timed to shock delivery. The independent expression of these behaviors in both experiments reveal a fear conditioned cue to orchestrate a temporally organized suite of behaviors.